Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Clin Pharmacol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682893

ABSTRACT

Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.

2.
Front Genet ; 15: 1360224, 2024.
Article in English | MEDLINE | ID: mdl-38596212

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.

3.
J Neuromuscul Dis ; 11(2): 285-297, 2024.
Article in English | MEDLINE | ID: mdl-38363615

ABSTRACT

Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes. Methods and Results: We retrospectively collected 3138 echocardiographic measurements of left ventricular ejection fraction (EF), shortening fraction (SF), and end-diastolic volume (EDV) from 819 DMD participants, 541 from an Italian multicentric cohort and 278 from the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS). Using generalized estimating equation (GEE) models, we estimated the yearly rate of decrease of EF (-0.80%) and SF (-0.41%), while EDV increase was not significantly associated with age. Utilizing a multivariate generalized estimating equation (GEE) model we observed that mutations preserving the expression of the C-terminal Dp71 isoform of dystrophin were correlated with decreased EDV (-11.01 mL/m2, p = 0.03) while for dp116 were correlated with decreased EF (-4.14%, p = <0.001). The rs10880 genotype in the LTBP4 gene, previously shown to prolong ambulation, was also associated with increased EF and decreased EDV (+3.29%, p = 0.002, and -10.62 mL/m2, p = 0.008) with a recessive model. Conclusions: We quantitatively describe the progression of systolic dysfunction progression in DMD, confirm the effect of distal dystrophin isoform expression on the dystrophin-deficient heart, and identify a strong effect of LTBP4 genotype of DCM in DMD.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Dystrophin/metabolism , Haplotypes , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/complications , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Protein Isoforms/genetics , Latent TGF-beta Binding Proteins/genetics
4.
J Neurol Sci ; 456: 122816, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38071852

ABSTRACT

Serum biomarkers that might detect clinical progression are currently lacking for Spinal and bulbar muscular atrophy (SBMA), thus limiting the effectiveness of possible future pharmacological trials. Elevation of cardiac troponin T (cTnT) unrelated to myocardial damage in a motor neuron (MN) disease as amyotrophic lateral sclerosis (ALS) was associated to disease severity. We enrolled 47 SBMA patients and 5 Spinal muscular atrophy (SMA) type 3 adult patients as control group; each SBMA patient was evaluated at baseline and at one-year follow-up visit. Demographic and clinical data including functional scores (SBMAFRS) were collected; serum was collected as standard of care and tested for cardiac troponins. Levels of cTnT but not cTnI were increased in SBMA with respect to reference values; unlike other neuromuscular diseases, SMA patients had overall normal cTnT values. Median cTnT concentrations did not change after one year and values were correlated to motor function, particularly with lower limb subdomain, at baseline only. Variations of cTnT and of SBMAFRS were unrelated. The cautiously promising results of cTnT as potential biomarker should undergo a more extensive clinical validation, including studies with longer follow-up period. When evaluating SBMA patients for a potential cardiac damage cTnI testing should be coupled or preferred to cTnT.


Subject(s)
Amyotrophic Lateral Sclerosis , Bulbo-Spinal Atrophy, X-Linked , Muscular Atrophy, Spinal , Neuromuscular Diseases , Spinal Muscular Atrophies of Childhood , Adult , Humans , Troponin T , Muscular Atrophy, Spinal/diagnosis , Biomarkers
5.
Neuromuscul Disord ; 34: 75-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157655

ABSTRACT

Duchenne muscular dystrophy (DMD) is a neuromuscular condition characterized by muscle weakness. The Performance of upper limb (PUL) test is designed to evaluate upper limb function in DMD patients across three domains. The aim of this study is to identify frequently lost or gained PUL 2.0 abilities at distinct functional stages in DMD patients. This retrospective study analyzed prospectively collected data on 24-month PUL 2.0 changes related to ambulatory function. Ambulant patients were categorized based on initial 6MWT distance, non-ambulant patients by time since ambulation loss. Each PUL 2.0 item was classified as shift up, no change, or shift down. The study's cohort incuded 274 patients, with 626 paired evaluations at the 24-month mark. Among these, 55.1 % had activity loss, while 29.1 % had gains. Ambulant patients showed the lowest loss rates, mainly in the shoulder domain. The highest loss rate was in the shoulder domain in the transitioning subgroup and in elbow and distal domains in the non-ambulant patients. Younger ambulant patients demonstrated multiple gains, whereas in the other functional subgroups there were fewer gains, mostly tied to singular activities. Our findings highlight divergent upper limb domain progression, partly linked to functional status and baseline function.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/complications , Retrospective Studies , Upper Extremity , Walking , Muscle Weakness
6.
Neuromuscul Disord ; 33(12): 911-916, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945485

ABSTRACT

Due to poor data in literature, we aimed to investigate the respiratory function in a large cohort of naïve Italian adult (≥18 years) SMA patients in a multi-centric cross-sectional study. The following respiratory parameters were considered: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and need for non-invasive ventilation (NIV). We included 145 treatment-naïve adult patients (SMA2=18, SMA3=125; SMA4=2), 58 females (40 %), with median age at evaluation of 37 years (range 18-72). Fifty-six (37 %) and 41 (31 %) patients had abnormal (<80 %) values of FVC and FEV1, respectively. Fourteen (14 %) patients needed NIV, started at median age of 21 (range 4-68). Motor function, measured by Hammersmith Functional Motor Scale Expanded and Revised Upper Limb Module as well as SMA2, loss of walking ability, surgery for scoliosis, use of NIV, and cough assisting device (CAD) were all significantly associated to lower FVC and FEV1 values, while no association with age at baseline, disease duration, gender or 6 min walking test was observed, except for a correlation between FVC and age in SMA3 walkers (p < 0.05). In conclusion, respiratory function in adult SMA patients is relatively frequently impaired, substantially stable, and significantly correlated with motor function and disease severity.


Subject(s)
Muscular Atrophy, Spinal , Respiration , Adult , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Cross-Sectional Studies , Vital Capacity , Forced Expiratory Volume
7.
Sci Rep ; 13(1): 17311, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828349

ABSTRACT

Serum creatinine has been indicated as a potential marker of motor function in SBMA and results form previous longitudinal studies pointed to its decline over time. This is a longitudinal retrospective study investigating creatinine changes over a 36-month-period in 73 patients with SBMA. Severity and progression of the disease was assessed according to serum creatine kinase (CK) values, manual muscle testing (MMT), SBMA functional rating scale (SBMAFRS) score, 6-min-walk test (6MWT) value, and spirometry (forced vital capacity, fVC%) obtained at the baseline and at each of the annual follow-up visits. Baseline serum creatinine concentrations positively correlated with 6MWT, the MMT megascore score of both the upper (ULM) and lower (LLM) limbs and SBMAFRS. No correlation was found with CK or fVC% values. Similar correlation results were achieved at all the subsequent time points. Longitudinal assessments conducted by the generalized estimating equations (GEE) method returned significant changes for SBMAFRS (- 1.41 points per year, p < 0.001), ULM and LLM (- 0.69, p = 0.01; and - 1.07, p < 0.001, respectively), 6MWT (- 47 m, p < 0.001) but not for creatinine (- 0.82, p > 0.05). We also observed that creatinine levels at baseline did not correlate with changes in the other measures from baseline at each annual visit. Our data do not support a role for serum creatinine as sensitive biomarker of disease progression, and possibily prognosis, in SBMA.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Muscular Atrophy, Spinal , Humans , Creatinine , Retrospective Studies , Biomarkers , Disease Progression
8.
PLoS One ; 18(6): e0286074, 2023.
Article in English | MEDLINE | ID: mdl-37279196

ABSTRACT

Compression as an accelerant of computation is increasingly recognized as an important component in engineering fast real-world machine learning methods for big data; c.f., its impact on genome-scale approximate string matching. Previous work showed that compression can accelerate algorithms for Hidden Markov Models (HMM) with discrete observations, both for the classical frequentist HMM algorithms-Forward Filtering, Backward Smoothing and Viterbi-and Gibbs sampling for Bayesian HMM. For Bayesian HMM with continuous-valued observations, compression was shown to greatly accelerate computations for specific types of data. For instance, data from large-scale experiments interrogating structural genetic variation can be assumed to be piece-wise constant with noise, or, equivalently, data generated by HMM with dominant self-transition probabilities. Here we extend the compressive computation approach to the classical frequentist HMM algorithms on continuous-valued observations, providing the first compressive approach for this problem. In a large-scale simulation study, we demonstrate empirically that in many settings compressed HMM algorithms very clearly outperform the classical algorithms with no, or only an insignificant effect, on the computed probabilities and infered state paths of maximal likelihood. This provides an efficient approach to big data computations with HMM. An open-source implementation of the method is available from https://github.com/lucabello/wavelet-hmms.


Subject(s)
Algorithms , Markov Chains , Bayes Theorem , Probability , Computer Simulation
9.
Nat Rev Neurol ; 19(7): 410-423, 2023 07.
Article in English | MEDLINE | ID: mdl-37308617

ABSTRACT

Patients with Duchenne muscular dystrophy (DMD) show clinically relevant phenotypic variability, despite sharing the same primary biochemical defect (dystrophin deficiency). Factors contributing to this clinical variability include allelic heterogeneity (specific DMD mutations), genetic modifiers (trans-acting genetic polymorphisms) and variations in clinical care. Recently, a series of genetic modifiers have been identified, mostly involving genes and/or proteins that regulate inflammation and fibrosis - processes increasingly recognized as being causally linked with physical disability. This article reviews genetic modifier studies in DMD to date and discusses the effect of genetic modifiers on predicting disease trajectories (prognosis), clinical trial design and interpretation (inclusion of genotype-stratified subgroup analyses) and therapeutic approaches. The genetic modifiers identified to date underscore the importance of progressive fibrosis, downstream of dystrophin deficiency, in driving the disease process. As such, genetic modifiers have shown the importance of therapies aimed at slowing this fibrotic process and might point to key drug targets.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , Prognosis , Genotype , Fibrosis
10.
PLoS One ; 18(5): e0285422, 2023.
Article in English | MEDLINE | ID: mdl-37155641

ABSTRACT

PURPOSE: Congenital myopathies are a heterogeneous group of diseases affecting the skeletal muscles and characterized by high clinical, genetic, and histological variability. Magnetic Resonance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty replacement and oedema) and disease progression. Machine Learning is becoming increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps (SOMs) have never been used for the identification of the patterns in these diseases. The aim of this study is to evaluate if SOMs may discriminate between muscles with fatty replacement (S), oedema (E) or neither (N). METHODS: MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologically proven autosomal dominant mutation of the STIM1 gene, were examined: for each patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles were evaluated for muscular fatty replacement on the T1w images, and for oedema on the STIR images, for reference. Sixty radiomic features were collected from each muscle at t0 and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results were compared with radiological evaluation. RESULTS: Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients showed widespread fatty replacement that intensifies at t1, while oedema mainly affected the muscles of the legs and appears stable at follow-up. All muscles with oedema showed fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0 and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1. CONCLUSION: Our unsupervised learning model appears to be able to recognize muscles altered by the presence of edema and fatty replacement.


Subject(s)
Myopathies, Structural, Congenital , Unsupervised Machine Learning , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Magnetic Resonance Imaging/methods , Myopathies, Structural, Congenital/diagnostic imaging , Myopathies, Structural, Congenital/genetics , Magnetic Resonance Spectroscopy , Edema/diagnostic imaging , Edema/pathology , Stromal Interaction Molecule 1/genetics , Neoplasm Proteins
11.
Children (Basel) ; 10(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37189996

ABSTRACT

INTRODUCTION: The Performance of Upper Limb version 2.0 (PUL 2.0) is increasingly used in Duchenne Muscular Dystrophy (DMD) to study longitudinal functional changes of motor upper limb function in ambulant and non-ambulant patients. The aim of this study was to evaluate changes in upper limb functions in patients carrying mutations amenable to skipping exons 44, 45, 51 and 53. METHODS: All DMD patients were assessed using the PUL 2.0 for at least 2 years, focusing on 24-month paired visits in those with mutations eligible for skipping exons 44, 45, 51 and 53. RESULTS: 285 paired assessments were available. The mean total PUL 2.0 12-month change was -0.67 (2.80), -1.15 (3.98), -1.46 (3.37) and -1.95 (4.04) in patients carrying mutations amenable to skipping exon 44, 45, 51 and 53, respectively. The mean total PUL 2.0 24-month change was -1.47 (3.73), -2.78 (5.86), -2.95 (4.56) and -4.53 (6.13) in patients amenable to skipping exon 44, 45, 51 and 53, respectively. The difference in PUL 2.0 mean changes among the type of exon skip class for the total score was not significant at 12 months but was significant at 24 months for the total score (p < 0.001), the shoulder (p = 0.01) and the elbow domain (p < 0.001), with patients amenable to skipping exon 44 having smaller changes compared to those amenable to skipping exon 53. There was no difference within ambulant or non-ambulant cohorts when subdivided by exon skip class for the total and subdomains score (p > 0.05). CONCLUSIONS: Our results expand the information on upper limb function changes detected by the PUL 2.0 in a relatively large group of DMD patients with distinct exon-skipping classes. This information can be of help when designing clinical trials or in the interpretation of the real world data including non-ambulant patients.

12.
J Neuromuscul Dis ; 10(4): 567-574, 2023.
Article in English | MEDLINE | ID: mdl-37066919

ABSTRACT

BACKGROUND: The performance of upper limb 2.0 (PUL) is widely used to assess upper limb function in DMD patients. The aim of the study was to assess 24 month PUL changes in a large cohort of DMD patients and to establish whether domains changes occur more frequently in specific functional subgroups. METHODS: The PUL was performed in 311 patients who had at least one pair of assessments at 24 months, for a total of 808 paired assessments. Ambulant patients were subdivided according to the ability to walk: >350, 250-350, ≤250 meters. Non ambulant patients were subdivided according to the time since they lost ambulation: <1, 1-2, 2-5 or >5 years. RESULTS: At 12 months, the mean PUL 2.0 change on all the paired assessments was -1.30 (-1.51--1.05) for the total score, -0.5 (-0.66--0.39) for the shoulder domain, -0.6 (-0.74--0.5) for the elbow domain and -0.1 (-0.20--0.06) for the distal domain.At 24 months, the mean PUL 2.0 change on all the paired assessments was -2.9 (-3.29--2.60) for the total score, -1.30 (-1.47--1.09) for the shoulder domain, -1.30 (-1.45--1.11) for the elbow domain and -0.4 (-1.48--1.29) for the distal domain.Changes at 12 and 24 months were statistically significant between subgroups with different functional abilities for the total score and each domain (p < 0.001). CONCLUSION: There were different patterns of changes among the functional subgroups in the individual domains. The time of transition, including the year before and after loss of ambulation, show the peak of negative changes in PUL total scores that reflect not only loss of shoulder but also of elbow activities. These results suggest that patterns of changes should be considered at the time of designing clinical trials.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Activities of Daily Living , Upper Extremity , Walking
14.
J Neurol ; 270(3): 1452-1456, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36383259

ABSTRACT

OBJECTIVE: To validate an Italian version of the Rasch-Built Overall ALS Disability Scale (ROADS) in a broad population of patients and assess its longitudinal performance over time. METHODS: 270 ALS patients referring to the Motor Neuron Disease Clinic of the University of Padova and Modena (Italy) accepted to compile the Italian version of the ROADS and results were correlated with the ALSFRSr and ALSAQ-40 scores, FVC values, and creatinine or albumin blood levels. To verify test-retest reliability, patients were asked to fill in a second copy of the scale within 5-7 days. Thirty-nine patients compiled a further copy of questionnaire during the follow up visit (after 133 days on average) which allowed us a longitudinal assessment of the scale. RESULTS: We found a good external construct validity between ROADS and either ALSFRS-R (correlation coefficient = 0.85) or ALSAQ-40 (correlation coefficient = - 0.84). Test-retest reliability was excellent with a concordance-correlation coefficient of 0.93. Yet, we observed a significant correlation between changes over time of the ROADS normalised sum score (- 2.18 point loss per month) and those of both the ALSFRS-R (positive correlation; Rho = 0.64, p ≤ 0.0001) or the ALSAQ-40 (negative correlation; Rho = - 0.60, p = 0.014). CONCLUSIONS: The Italian version of ROADS proved to be a reliable marker to monitor overall disability in ALS patients. Further studies are necessary to assess its longitudinal performance.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Reproducibility of Results , Activities of Daily Living , Surveys and Questionnaires , Italy
15.
Autophagy ; 19(3): 984-999, 2023 03.
Article in English | MEDLINE | ID: mdl-35857791

ABSTRACT

Endoplasmic reticulum stress is an emerging significant player in the molecular pathology of connective tissue disorders. In response to endoplasmic reticulum stress, cells can upregulate macroautophagy/autophagy, a fundamental cellular homeostatic process used by cells to degrade and recycle proteins or remove damaged organelles. In these scenarios, autophagy activation can support cell survival. Here we demonstrated by in vitro and in vivo approaches that megakaryocytes derived from col6a1-/- (collagen, type VI, alpha 1) null mice display increased intracellular retention of COL6 polypeptides, endoplasmic reticulum stress and apoptosis. The unfolded protein response is activated in col6a1-/- megakaryocytes, as evidenced by the upregulation of molecular chaperones, by the increased splicing of Xbp1 mRNA and by the higher level of the pro-apoptotic regulator DDIT3/CHOP. Despite the endoplasmic reticulum stress, basal autophagy is impaired in col6a1-/- megakaryocytes, which show lower BECN1 levels and reduced autophagosome maturation. Starvation and rapamycin treatment rescue the autophagic flux in col6a1-/- megakaryocytes, leading to a decrease in intracellular COL6 polypeptide retention, endoplasmic reticulum stress and apoptosis. Furthermore, megakaryocytes cultured from peripheral blood hematopoietic progenitors of patients affected by Bethlem myopathy and Ullrich congenital muscular dystrophy, two COL6-related disorders, displayed increased apoptosis, endoplasmic reticulum stress and impaired autophagy. These data demonstrate that genetic disorders of collagens, endoplasmic reticulum stress and autophagy regulation in megakaryocytes may be interrelated.Abbreviations: 7-AAD: 7-amino-actinomycin D; ATF: activating transcriptional factor; BAX: BCL2 associated X protein; BCL2: B cell leukemia/lymphoma 2; BCL2L1/Bcl-xL: BCL2-like 1; BM: bone marrow; COL6: collagen, type VI; col6a1-/-: mice that are null for Col6a1; DDIT3/CHOP/GADD153: DNA-damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; reticulophagy: endoplasmic reticulum-selective autophagy; HSPA5/Bip: heat shock protein 5; HSP90B1/GRP94: heat shock protein 90, beta (Grp94), member 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; Mk: megakaryocytes; MTOR: mechanistic target of rapamycin kinase; NIMV: noninvasive mechanical ventilation; PI3K: phosphoinositide 3-kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; RT-qPCR: reverse transcription-quantitative real-time PCR; ROS: reactive oxygen species; SERPINH1/HSP47: serine (or cysteine) peptidase inhibitor, clade H, member 1; sh-RNA: short hairpin RNA; SOCE: store operated calcium entry; UCMD: Ullrich congenital muscular dystrophy; UPR: unfolded protein response; WIPI2: WD repeat domain, phosphoinositide-interacting 2; WT: wild type; XBP1: X-box binding protein 1.


Subject(s)
Autophagy , Phosphatidylinositol 3-Kinases , Mice , Animals , Autophagy/physiology , Phosphatidylinositol 3-Kinases/metabolism , Megakaryocytes/metabolism , Collagen Type VI , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum Chaperone BiP , Proto-Oncogene Proteins c-bcl-2 , Sirolimus
16.
Acta Myol ; 42(4): 118-122, 2023.
Article in English | MEDLINE | ID: mdl-38406379

ABSTRACT

Duchenne Muscular Dystrophy (DMD) includes predictable phases requiring dedicated standard treatments. Therapeutic strategies feature corticosteroids or the more recent gene therapy/stop codon read-through. Ataluren (Translarna®) is an oral drug promoting the readthrough of premature stop codons caused by nonsense mutation (nm) in order to produce full-length dystrophin. It was licensed by EMA in 2014 for ambulatory patients with nmDMD aged ≥ 5 years. Our aim is to report data on long-term ataluren use in Italian patients with nmDMD, with emphasis on continuity of the treatment after loss of ambulation (LoA). Four DMD patients aged between 16 and 24 years who lost ambulation between 12 and 14 years continued to take ataluren after LoA. The oldest patient, aged 24 years, is still taking a few steps. Even in those experiencing motor decline, PUL-test performances were stable and respiratory function satisfactory in all; two patients developed severe cardiomyopathy, stable in one. Therapeutic continuity with ataluren should be offered to all nmDMD patients after LoA given its favourable safety and efficacy profile. However, further research is recommended to identify additional clinically meaningful outcomes and treatment goals following LoA.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Adolescent , Young Adult , Adult , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/drug therapy , Codon, Nonsense , Dystrophin/genetics , Oxadiazoles/therapeutic use , Walking
17.
J Neurol Neurosurg Psychiatry ; 93(12): 1253-1261, 2022 12.
Article in English | MEDLINE | ID: mdl-36220341

ABSTRACT

BACKGROUND: Natural history of spinal muscular atrophy (SMA) in adult age has not been fully elucidated yet, including factors predicting disease progression and response to treatments. Aim of this retrospective, cross-sectional study, is to investigate motor function across different ages, disease patterns and gender in adult SMA untreated patients. METHODS: Inclusion criteria were as follows: (1) clinical and molecular diagnosis of SMA2, SMA3 or SMA4 and (2) clinical assessments performed in adult age (>18 years). RESULTS: We included 64 (38.8%) females and 101 (61.2%) males (p=0.0025), among which 21 (12.7%) SMA2, 141 (85.5%) SMA3 and 3 (1.8%) SMA4. Ratio of sitters/walkers within the SMA3 subgroup was significantly (p=0.016) higher in males (46/38) than in females (19/38). Median age at onset was significantly (p=0.0071) earlier in females (3 years; range 0-16) than in males (4 years; range 0.3-28), especially in patients carrying 4 SMN2 copies. Median Hammersmith Functional Rating Scale Expanded scores were significantly (p=0.0040) lower in males (16, range 0-64) than in females (40, range 0-62); median revised upper limb module scores were not significantly (p=0.059) different between males (24, 0-38) and females (33, range 0-38), although a trend towards worse performance in males was observed. In SMA3 patients carrying three or four SMN2 copies, an effect of female sex in prolonging ambulation was statistically significant (p=0.034). CONCLUSIONS: Our data showed a relevant gender effect on SMA motor function with higher disease severity in males especially in the young adult age and in SMA3 patients.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Young Adult , Male , Humans , Female , Child, Preschool , Adolescent , Spinal Muscular Atrophies of Childhood/epidemiology , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/drug therapy , Cross-Sectional Studies , Retrospective Studies , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/genetics , Disease Progression
18.
Clin Med Insights Cardiol ; 16: 11795468221116838, 2022.
Article in English | MEDLINE | ID: mdl-36046180

ABSTRACT

The purpose of this study was to determine whether the longitudinal progression of decline in left ventricular ejection fraction (LVEF) in Duchenne muscular dystrophy (DMD) patients is moderated by ADRB1 genotype and whether the efficacy of ß-blocker therapy is influenced by genotype status. About 147 DMD patients (6-34 years.) were analyzed with a focus on ß1 adrenergic receptor (ADRB1) genotype variants. Patients were grouped by ADRB1 genotype resulting in Gly389 patients and Arg389 patients. A generalized additive mixed effects model was used to examine differences in the nonlinear trend of LVEF across patient ages between genotype groups and for ß-blocker use. Both genotype groups displayed a progressive decline in LVEF starting around the mean age of ambulation loss (~12 years). However, there was no difference between genotype groups in the progression of decline in LVEF. There was a significant effect of ß-blocker use on longitudinal LVEF, wherein patients on ß-blockers had systematically lower LVEF when compared to patients not on ß-blockers. However, the effect of ß-blocker therapy on LVEF was not affected by ADRB1 genotype. The current study did not demonstrate an influence of patient ADRB1 genotype on longitudinal LVEF in our cohort. Despite previous literature suggesting a positive influence of ß-blocker use on cardiac function in DMD patients and of an ADRB1 genotypic difference in responsiveness to ß-blocker use, we did not observe this in our cohort. Interestingly, our cohort did not demonstrate a positive influence of ß-blocker use on LVEF measures.

19.
Dis Model Mech ; 15(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35946603

ABSTRACT

Mutations of genes coding for collagen VI (COL6) cause muscle diseases, including Ullrich congenital muscular dystrophy and Bethlem myopathy. Although COL6 genetic variants were recently linked to brain pathologies, the impact of COL6 deficiency in brain function is still largely unknown. Here, a thorough behavioral characterization of COL6-null (Col6a1-/-) mice unexpectedly revealed that COL6 deficiency leads to a significant impairment in sensorimotor gating and memory/attention functions. In keeping with these behavioral abnormalities, Col6a1-/- mice displayed alterations in dopaminergic signaling, primarily in the prefrontal cortex. In vitro co-culture of SH-SY5Y neural cells with primary meningeal fibroblasts from wild-type and Col6a1-/- mice confirmed a direct link between COL6 ablation and defective dopaminergic activity, through a mechanism involving the inability of meningeal cells to sustain dopaminergic differentiation. Finally, patients affected by COL6-related myopathies were evaluated with an ad hoc neuropsychological protocol, revealing distinctive defects in attentional control abilities. Altogether, these findings point towards a previously undescribed role for COL6 in the proper maintenance of dopamine circuitry function and its related neurobehavioral features in both mice and humans. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Contracture , Muscular Diseases , Muscular Dystrophies , Neuroblastoma , Animals , Collagen Type VI/genetics , Dopamine , Humans , Mice , Muscular Dystrophies/pathology , Mutation
20.
PLoS One ; 17(7): e0271681, 2022.
Article in English | MEDLINE | ID: mdl-35905042

ABSTRACT

The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Adrenal Cortex Hormones/therapeutic use , Child , Child, Preschool , Dystrophin/genetics , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Mutation , Protein Isoforms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...