Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
ACS Omega ; 9(18): 20066-20085, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737068

ABSTRACT

Green tea consumption is associated with protective and preventive effects against various types of cancer. These effects are attributed to polyphenols, particularly epigallocatechin-3-gallate (EGCG). EGCG acts by directly inhibiting tumor suppressor protein p53. The binding mechanism by which EGCG inhibits p53 activity is associated with residues Trp23-Lys24 and Pro47-Thr55 within the p53 N-terminal domain (NTD). However, the structural and thermodynamic aspects of the interaction between EGCG and p53 are poorly understood. Therefore, based on crystallographic data, we combine docking, molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area approaches to explore the intricacies of the EGCG-p53 binding mechanism. A triplicate microsecond MD simulation for each system is initially performed to capture diverse p53 NTD conformations. From the start, the most populated cluster of the second run (R2-1) stands out due to a unique opening between Trp23 and Trp53. During MD simulations, this conformation allows EGCG to sustain a high level of stability and affinity while interacting with both regions of interest and deepening the binding pocket. Structural analysis emphasizes the significance of pyrogallol motifs in EGCG binding. Therefore, the conformational shift in this gap is pivotal, enabling EGCG to impede p53 interactions and manifest its anticancer properties. These findings enhance the present comprehension of the anticancer properties of green tea polyphenols and pave the way for future therapeutic developments.

2.
Front Oncol ; 14: 1341766, 2024.
Article in English | MEDLINE | ID: mdl-38571493

ABSTRACT

Introduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4BG13D and its membrane transporter (PDE6δ). Methods: The antitumor potential of C14 and P8 was assessed using TNBC cell lines, MDA-MB-231, and the radioresistant derivative MDA-MB-231RR, both carrying the K-Ras4B> G13D mutation. We investigated the compounds' effects on K-Ras signaling pathways, cell viability, and tumor growth in vivo. Results: Western blotting analysis determined the negative impact of C14 and P8 on the activation of mutant K-Ras signaling pathways in MDA-MB-231 and MDA-MB-231RR cells. Proliferation assays demonstrated their efficacy as cytotoxic agents against K-RasG13D mutant cancer cells and in inducing apoptosis. Clonogenic assays proven their ability to inhibit TNBC and radioresistant TNBC cell clonogenicity. In In vivo studies, C14 and P8 inhibited tumor growth and reduced proliferation, angiogenesis, and cell cycle progression markers. Discussion: These findings suggest that C14 and P8 could serve as promising adjuvant treatments for TNBC, particularly for non-responders to standard therapies. By targeting overactivated K-Ras and its membrane transporter, these compounds offer potential therapeutic benefits against TNBC, including its radioresistant form. Further research and clinical trials are warranted to validate their efficacy and safety as novel TNBC treatments.

3.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675586

ABSTRACT

Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , Rhinitis, Allergic , Urtica dioica , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Rhinitis, Allergic/drug therapy , Humans , Urtica dioica/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
4.
J Steroid Biochem Mol Biol ; 239: 106474, 2024 May.
Article in English | MEDLINE | ID: mdl-38307214

ABSTRACT

Flavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease. GPER, an estrogen receptor on the cell surface, has been postulated as a probable orchestrator of the beneficial effects of several flavonoids through modulation/inhibition of various mechanisms that lead to cancer progression. Therefore, applying pocket and cavity protein detection and docking and molecular dynamics simulations (MD), we generate, from a cluster composed of 39 flavonoids, crucial insights into the potential role as GPER ligands, of Puerarin, Isoquercetin, Kaempferol 3-O-glucoside and Petunidin 3-O-glucoside, aglycones whose sugar moiety delimits a new described sugar-acceptor sub-cavity into the cavity binding site on the receptor, as well as of the probable activation mechanism of the receptor and the pivotal residues involved in it. Altogether, our results shed light on the potential use of the aforementioned flavonoids as GPER ligands and for further evaluations in in vitro and in vivo assays to elucidate their probable anti-cancer activity.


Subject(s)
Molecular Dynamics Simulation , Neoplasms , Humans , Flavonoids/pharmacology , Receptors, G-Protein-Coupled/metabolism , Binding Sites , Neoplasms/metabolism , Sugars , Glucosides , Molecular Docking Simulation
5.
ACS Chem Neurosci ; 15(3): 629-644, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38227464

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease affecting older adults. AD pathogenesis involves the production of the highly neurotoxic amyloid-ß peptide 1-42 (Aß1-42) from ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). The phosphorylation of BACE1 at Thr252 increases its enzymatic activity. This study examined the phosphorylation of BACE1 from human and rat BACE1 in silico through phosphorylation predictors. Besides, we explored how phosphorylation at various sites affected the BACE1 structure and its affinity with amyloid precursor protein (APP) and six BACE1 inhibitors. Additionally, we evaluated the phosphorylation of Thr252-BACE1 by glycogen synthase kinase 3 ß (GSK3ß) in vitro. The phosphorylation predictors showed that Thr252, Ser59, Tyr76, Ser71, and Ser83 could be phosphorylated. Also, Ser127 in rat BACE1 can be phosphorylated, but human BACE1 has a Gly at this position. Molecular dynamics simulations showed that Ser127 plays an important role in the open and closed BACE1 conformational structures. Docking studies and the molecular mechanics generalized Born surface area (MMGBSA) approach showed that human BACE1 phosphorylated at Thr252 and rat BACE1 phosphorylated at Ser71 have the best binding and free energy with APP, forming hydrogen bonds with Asp672. Importantly, inhibitors have a higher affinity for the phosphorylated rat BACE1 than for its human counterpart, which could explain their failure during clinical trials. Finally, in vitro experiments showed that GSK3ß could phosphorylate BACE1. In conclusion, BACE1 phosphorylation influences the BACE1 conformation and its recognition of ligands and substrates. Thus, these features should be carefully considered in the design of BACE1 inhibitors.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Animals , Humans , Rats , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Ligands , Phosphorylation
6.
Steroids ; 201: 109334, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949336

ABSTRACT

Estrogen receptors (ERs) are nuclear factors that exist as two subtypes: ERα and ERß. Among the different selective ERß agonist ligands, the widely used ERß-selective agonist DPN (diarylpropionitrile) is highlighted. Recent experimental and thermodynamic information between R-DPN and S-DPN enantiomers with ERß is important for evaluating further the ability of MD simulations combined with end-point methods to reproduce experimental binding affinity and generate structural insight not provided through crystallographic data. In this research, starting from crystallographic data and experimental binding affinities, we explored the structural and thermodynamic basis of the molecular recognition of ERß with DPN and derivatives through triplicate MD simulations combined with end-point methods. Conformational analysis showed some regions with the highest mobility linked to ligand association that, at the time, impacted the total protein fluctuation. Binding free energy (ΔG) analysis revealed that the Molecular Mechanics Generalized-Born Surface Area (MMGBSA) approach was able to reproduce the experimental tendency with a strong correlation (R = 0.778), whereas per-residue decomposition analysis revealed that all the systems interacted strongly with eight residues (L298, E305, L339, M340, L343, F356, H475, and L476). The comparison between theoretical studies using the MMGBSA approach with experimental results provides new insights for drug designing of new DPN derivatives.


Subject(s)
Estrogen Receptor beta , Receptors, Estrogen , Estrogen Receptor beta/metabolism , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Ligands , Molecular Conformation , Thermodynamics , Nitriles/chemistry , Estradiol
7.
Sci Rep ; 13(1): 17933, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863936

ABSTRACT

According to WHO statistics, breast cancer (BC) disease represents about 2.3 million diagnosed and 685,000 deaths globally. Regarding histological classification of BC, the Estrogen (ER) and Progesterone (PR) receptors negative-expression cancer, named Triple-Negative BC (TNBC), represents the most aggressive type of this disease, making it a challenge for drug discovery. In this context, our research group, applying a well-established Virtual Screening (VS) protocol, in addition to docking and molecular dynamics simulations studies, yielded two ligands identified as 6 and 37 which were chemically synthesized and evaluated on MCF-7 and MDA-MB-231 cancer cell lines. Strikingly, 37 assayed on MDA-MB-231 (a TNBC cell model) depicted an outstanding value of 18.66 µM much lower than 65.67 µM yielded by Gossypol Bcl-2 inhibitor whose main disadvantage is to produce multiple toxic effects. Highlighted above, enforce the premise of the computational tools to find new therapeutic options against the most aggressive forms of breast cancer, as the results herein showed.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Estrogens/pharmacology , Molecular Dynamics Simulation , Cell Line, Tumor , Cell Proliferation
8.
RSC Adv ; 13(36): 25118-25128, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614784

ABSTRACT

Because of the high economic cost of exploring the experimental impact of mutations occurring in kinase proteins, computational approaches have been employed as alternative methods for evaluating the structural and energetic aspects of kinase mutations. Among the main computational methods used to explore the affinity linked to kinase mutations are docking procedures and molecular dynamics (MD) simulations combined with end-point methods or alchemical methods. Although it is known that end-point methods are not able to reproduce experimental binding free energy (ΔG) values, it is also true that they are able to discriminate between a better or a worse ligand through the estimation of ΔG. In this contribution, we selected ten wild-type and mutant cocrystallized EGFR-inhibitor complexes containing experimental binding affinities to evaluate whether MMGBSA or MMPBSA approaches can predict the differences in affinity between the wild type and mutants forming a complex with a similar inhibitor. Our results show that a long MD simulation (the last 50 ns of a 100 ns-long MD simulation) using the MMGBSA method without considering the entropic components reproduced the experimental affinity tendency with a Pearson correlation coefficient of 0.779 and an R2 value of 0.606. On the other hand, the correlation between theoretical and experimental ΔΔG values indicates that the MMGBSA and MMPBSA methods are helpful for obtaining a good correlation using a short rather than a long simulation period.

9.
RSC Adv ; 13(13): 9078-9090, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36950073

ABSTRACT

The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.

10.
J Biomol Struct Dyn ; 41(22): 13138-13153, 2023.
Article in English | MEDLINE | ID: mdl-36705144

ABSTRACT

The aryl hydrocarbon receptor (AhR) has broad biological functions when its ligands activate it; the non-binding interactions with AhR have not been fully elucidated due to the absence of a complete tridimensional (3D) structure. Therefore, utilization of the whole 3D structure from Homo sapiens AhR by in silico studies will allow us to better study and analyze the binding mode of its full and partial agonists, and antagonists, as well as its interaction with the HSP90 chaperone. The 3D AhR structure was obtained from I-TASSER and subjected to molecular dynamics (MD) simulations to obtain different structural conformations and determine the most populated AhR conformer by clustering analyses. The AhR-3D structures selected from MD simulations and those from clustering analyses were used to achieve docking studies with some of its ligands and protein-protein docking with HSP90. Once the AhR-3D structure was built, its Ramachandran maps and energy showed a well-qualified 3D model. MD simulations showed that the per-Arnt-Sim homology (PAS) PAS A, PAS B, and Q domains underwent conformational changes, identifying the conformation when agonists were binding also, and HSP90 was binding near the PAS A, PAS B, and Q domains. However, when antagonists are binding, HSP90 does not bind near the PAS A, PAS B, and Q domains. These studies show that the complex agonist-AhR-HSP90 can be formed, but this complex is not formed when an antagonist is binding. Knowing the conformations when the ligands bind to AHR and the behavior of HSP90 allows for an understanding of its activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Receptors, Aryl Hydrocarbon , Humans , Receptors, Aryl Hydrocarbon/chemistry , Ligands , Protein Binding
11.
J Mol Graph Model ; 119: 108393, 2023 03.
Article in English | MEDLINE | ID: mdl-36525840

ABSTRACT

Several properties of silymarin (SM) extract have been attributed to their three major flavonolignans (silybin, silychristin, and silydianin) and their 2,3-dehydro derivatives (2,3-dehydrosilybin, 2,3-dehydrosilychristin, and 2,3-dehydrosilydianin). Experimental findings have suggested that the antioxidative and protective activities of these compounds could be due to their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The mechanism by which SM compounds exert their effect has been suggested to be by disrupting the complex between Nrf2 and Kelch-like ECH-associated protein 1 (Keap1). However, information about the structural and energetic basis of the inhibitory mechanism of SM compounds on the Nrf2-Keap1 pathway is lacking. We evaluated the binding properties of SM compounds because experimental findings have pointed to them as potential activators of Nrf2. Our study combined docking and molecular dynamics (MD) simulations with the Poisson-Boltzmann and generalized Born and surface area (MMPBSA and MMGBSA) methods and quantum mechanics-molecular mechanics (QMMM) calculations to investigate Keap1-ligand interactions. Our results predicted that silybinA and 2,3-dehydrosilybin bind to Keap1, forming interactions with the same pockets as those observed for the cocrystallized Keap1-Cpd16 complex but with more favorable binding free energies. These findings indicate that both natural compounds are potential activators of Nrf2.


Subject(s)
NF-E2-Related Factor 2 , Silymarin , Silybin , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Silymarin/pharmacology , Silymarin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry
12.
RSC Adv ; 12(53): 34359-34368, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545576

ABSTRACT

DRD2 is an important receptor in the mediation of antipsychotic drugs but also in Parkinson medication, hyperprolactinemia, nausea and vomiting. Recently, crystallographic studies of the DRD2-risperidone complex have provided important information about risperidone recognition in wild-type and different stabilizing DRD2-risperidone residues. Using the crystallographic structure of the DRD2-risperidone complex as a starting point, we undertook molecular dynamics (MD) simulations to investigate the structural and thermodynamic basis of molecular recognition by risperidone at the ligand-binding sites of wild-type and mutant DRD2. A solvated phospholipid bilayer was used to construct DRD2-risperidone complexes, which were then subjected to several microsecond (µs) MD simulations in order to obtain realistic receptor-ligand conformations under the equilibrated simulation time. Risperidone had a higher affinity for wild-type and L94A mutant DRD2 than the W100L and W100A mutants, according to binding free energy calculations using the Molecular Mechanics Generalized-Born Surface Area (MMGBSA) method, explaining the experimental differences in ligand residence times. Principal component (PC) analysis revealed important conformational mobility upon molecular recognition of risperidone for the L94A mutant compared to the wild type, indicating an unfavorable entropic component that may contribute to improving risperidone affinity in the L94A DRD2 mutant.

13.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080216

ABSTRACT

In 40-50% of colorectal cancer (CRC) cases, K-Ras gene mutations occur, which induce the expression of the K-Ras4B oncogenic isoform. K-Ras4B is transported by phosphodiesterase-6δ (PDE6δ) to the plasma membrane, where the K-Ras4B-PDE6δ complex dissociates and K-Ras4B, coupled to the plasma membrane, activates signaling pathways that favor cancer aggressiveness. Thus, the inhibition of the K-Ras4B-PDE6δ dissociation using specific small molecules could be a new strategy for the treatment of patients with CRC. This research aimed to perform a preclinical proof-of-concept and a therapeutic potential evaluation of the synthetic I-C19 and 131I-C19 compounds as inhibitors of the K-Ras4B-PDE6δ dissociation. Molecular docking and molecular dynamics simulations were performed to estimate the binding affinity and the anchorage sites of I-C19 in K-Ras4B-PDE6δ. K-Ras4B signaling pathways were assessed in HCT116, LoVo and SW620 colorectal cancer cells after I-C19 treatment. Two murine colorectal cancer models were used to evaluate the I-C19 therapeutic effect. The in vivo biokinetic profiles of I-C19 and 131I-C19 and the tumor radiation dose were also estimated. The K-Ras4B-PDE6δ stabilizer, 131I-C19, was highly selective and demonstrated a cytotoxic effect ten times greater than unlabeled I-C19. I-C19 prevented K-Ras4B activation and decreased its dependent signaling pathways. The in vivo administration of I-C19 (30 mg/kg) greatly reduced tumor growth in colorectal cancer. The biokinetic profile showed renal and hepatobiliary elimination, and the highest radiation absorbed dose was delivered to the tumor (52 Gy/74 MBq). The data support the idea that 131I-C19 is a novel K-Ras4B/PDE6δ stabilizer with two functionalities: as a K-Ras4B signaling inhibitor and as a compound with radiotherapeutic activity against colorectal tumors.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Humans , Iodides , Iodine Radioisotopes , Mice , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/genetics
14.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144514

ABSTRACT

The heterodimeric complex between retinoic X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most important and predominant regulatory systems, controlling lipid metabolism by binding to specific DNA promoter regions. X-ray and molecular dynamics (MD) simulations have revealed the average conformation adopted by the RXRα-PPARγ heterodimer bound to DNA, providing information about how multiple domains communicate to regulate receptor properties. However, knowledge of the energetic basis of the protein-ligand and protein-protein interactions is still lacking. Here we explore the structural and energetic mechanism of RXRα-PPARγ heterodimer bound or unbound to DNA and forming complex with co-crystallized ligands (rosiglitazone and 9-cis-retinoic acid) through microsecond MD simulations, molecular mechanics generalized Born surface area binding free energy calculations, principal component analysis, the free energy landscape, and correlated motion analysis. Our results suggest that DNA binding alters correlated motions and conformational mobility within RXRα-PPARγ system that impact the dimerization and the binding affinity on both receptors. Intradomain correlated motions denotes a stronger correlation map for RXRα-PPARγ-DNA than RXRα-PPARγ, involving residues at the ligand binding site. In addition, our results also corroborated the greater role of PPARγ in regulation of the free and bound DNA state.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma , Alitretinoin/metabolism , Carrier Proteins/metabolism , DNA/chemistry , Humans , Ligands , PPAR gamma/metabolism , Rosiglitazone
15.
Molecules ; 27(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35956868

ABSTRACT

Naltrexone is a potent opioid antagonist with good blood-brain barrier permeability, targeting different endogenous opioid receptors, particularly the mu-opioid receptor (MOR). Therefore, it represents a promising candidate for drug development against drug addiction. However, the details of the molecular interactions of naltrexone and its derivatives with MOR are not fully understood, hindering ligand-based drug discovery. In the present study, taking advantage of the high-resolution X-ray crystal structure of the murine MOR (mMOR), we constructed a homology model of the human MOR (hMOR). A solvated phospholipid bilayer was built around the hMOR and submitted to microsecond (µs) molecular dynamics (MD) simulations to obtain an optimized hMOR model. Naltrexone and its derivatives were docked into the optimized hMOR model and submitted to µs MD simulations in an aqueous membrane system. The MD simulation results were submitted to the molecular mechanics-generalized Born surface area (MMGBSA) binding free energy calculations and principal component analysis. Our results revealed that naltrexone and its derivatives showed differences in protein-ligand interactions; however, they shared contacts with residues at TM2, TM3, H6, and TM7. The binding free energy and principal component analysis revealed the structural and energetic effects responsible for the higher potency of naltrexone compared to its derivatives.


Subject(s)
Naltrexone , Receptors, Opioid, mu , Animals , Humans , Ligands , Mice , Molecular Dynamics Simulation , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Receptors, Opioid, mu/metabolism , Water
16.
Pharmaceuticals (Basel) ; 15(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35745608

ABSTRACT

Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with -Br, -Cl, and -OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at µM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.

17.
J Biomol Struct Dyn ; 40(18): 8375-8383, 2022 11.
Article in English | MEDLINE | ID: mdl-33843474

ABSTRACT

Ivermectin (IVM) is an FDA-approved drug that has shown antiviral activity against a wide variety of viruses in recent years. IVM inhibits the formation of the importin-α/ß1 heterodimeric complex responsible for the translocation and replication of various viral species proteins. Also, IVM hampers SARS-CoV-2 replication in vitro; however, the molecular mechanism through which IVM inhibits SARS-CoV-2 is not well understood. Previous studies have explored the molecular mechanism through which IVM inhibits importin-α and several potential targets associated with COVID-19 by using docking approaches and MD simulations to corroborate the docked complexes. This study explores the energetic and structural properties through which IVM inhibits importin-α and five targets associated with COVID-19 by using docking and MD simulations combined with the molecular mechanics generalized Born surface area (MMGBSA) approach. Energetic and structural analysis showed that the main protease 3CLpro reached the most favorable affinity, followed by importin-α and Nsp9, which shared a similar relationship. Therefore, in vitro activity of IVM can be explained by acting as an inhibitor of importin-α, dimeric 3CLpro, and Nsp9, but mainly over dimeric 3CLpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Ivermectin/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Proteins , alpha Karyopherins
18.
J Biomol Struct Dyn ; 40(20): 9992-10004, 2022.
Article in English | MEDLINE | ID: mdl-34121618

ABSTRACT

Several drugs are now being tested as possible therapies due to the necessity of treating SARS-CoV-2 infection. Although approved vaccines bring much hope, a vaccination program covering the entire global population will take a very long time, making the development of effective antiviral drugs an effective solution for the immediate treatment of this dangerous infection. Previous studies found that three natural compounds, namely, tannic acid, 3-isotheaflavin-3-gallate and theaflavin-3,3-digallate, are effective proteinase (3CLpro) inhibitors of SARS-CoV (IC50 <10 µM). Based on this information and due to the high sequence identity between SARS-CoV and SARS-CoV-2 3CLpro, these three compounds could be candidate inhibitors of SARS-CoV-2 3CLpro. This paper explores the structural and energetic features that guided the molecular recognition of these three compounds for dimeric SARS-CoV-2 and SARS-CoV 3CLpro, the functional state of this enzyme, using docking and MD simulations with the molecular mechanics-generalized-born surface area (MMGBSA) approach. Energetic analysis demonstrated that the three compounds reached good affinities in both systems in the following order: tannic acid > 3-isotheaflavin-3-gallate > theaflavin-3,3-digallate. This tendency is in line with that experimentally reported between these ligands and SARS-CoV 3CLpro. Therefore, tannic acid may have clinical usefulness against COVID-19 by acting as a potent inhibitor of SARS-CoV-2 3CLpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Coronavirus 3C Proteases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Molecular Docking Simulation
19.
J Biomol Struct Dyn ; 40(24): 14204-14222, 2022.
Article in English | MEDLINE | ID: mdl-34784487

ABSTRACT

HDAC6 has emerged as a molecular target to treat neurodegenerative disorders, due to its participation in protein aggregate degradation, oxidative stress process, mitochondrial transport, and axonal transport. Thus, in this work we have designed a set of 485 compounds with hydroxamic and bulky-hydrophobic moieties that may function as HDAC6 inhibitors with a neuroprotective effect. These compounds were filtered by their predicted ADMET properties and their affinity to HDAC6 demonstrated by molecular docking and molecular dynamics simulations. The combination of in silico with in vitro neuroprotective results allowed the identification of a lead compound (FH-27) which shows neuroprotective effect that could be due to HDAC6 inhibition. Further, FH-27 chemical moiety was used to design a second series of compounds improving the neuroprotective effect from 2- to 10-fold higher (YSL-99, YSL-109, YSL-112, YSL-116 and YSL-121; 1.25 ± 0.67, 1.82 ± 1.06, 7.52 ± 1.78, 5.59 and 5.62 ± 0.31 µM, respectively). In addition, the R enantiomer of FH-27 (YSL-106) was synthesized, showing a better neuroprotective effect (1.27 ± 0.60 µM). In conclusion, we accomplish the in silico design, synthesis, and biological evaluation of hydroxamic acid derivatives with neuroprotective effect as suggested by an in vitro model. Communicated by Ramaswamy H. Sarma.


Subject(s)
Neuroprotective Agents , Neuroprotective Agents/pharmacology , Histone Deacetylase 6/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry
20.
J Biomol Struct Dyn ; 40(7): 3011-3023, 2022 04.
Article in English | MEDLINE | ID: mdl-33155532

ABSTRACT

X-ray analysis has provided structural data about a pH-driven conformational change in ß-lactoglobulin (BLG) known as the Tanford transition, which occurs at around pH 7 and involves the EF loop, which acts as a lid closing the internal cavity of the protein below pH 7 and opening it above pH 7. NMR studies using wild-type BLG have encountered problems trying to explain the Tanford transition, however, they have provided important insight using a dimeric BLG mutant, revealing that the opening and closure of the EF loop consists of two types of motions in the microsecond and milliseconds timescales. This provides valuable information indicating that the dimeric state is a good model to study the Tanford transition, although the understanding of this structural change is still lacking at the atomic level. We performed microsecond molecular dynamics (MD) simulations starting from different conformations of BLG in the monomeric and dimeric state, with protonated and deprotonated E89, in order to explore the Tanford transition. Our results provide structural information for the transition from the closed to the open conformation in BLG and show it occurs in the dimeric state in the microsecond timescale, in line with the fast motion observed through NMR experiments. In addition, MD simulations coupled to MMGBSA approach indicated that the most populated conformer of BLG in the open state is able to bind ligands with similar affinity to that of BLG at neutral pH obtained through crystallographic experiments.Communicated by Ramaswamy H. Sarma.


Subject(s)
Lactoglobulins , Molecular Dynamics Simulation , Animals , Cattle , Hydrogen-Ion Concentration , Lactoglobulins/chemistry , Ligands , Magnetic Resonance Spectroscopy , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...