Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(1): e0103823, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38112472

ABSTRACT

Acinetobacter pittii 978-A_19 was obtained from a parrot with pneumonia. It is resistant to ampicillin, carbenicillin, cephalosporins, clindamycin, and trimethoprim + sulfamethoxazole. The genome encodes a new blaADC allele, a blaOXA-502 gene, possesses several virulence genes related to adherence and biofilm formation, and has types I, II, and IV secretion systems.

2.
FEMS Microbiol Ecol ; 98(12)2022 11 17.
Article in English | MEDLINE | ID: mdl-36288213

ABSTRACT

Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.


Subject(s)
Acinetobacter , Chytridiomycota , Mycoses , Animals , Antifungal Agents/pharmacology , Anura/microbiology , Bacteria/genetics , Mycoses/microbiology , Skin/microbiology , Acinetobacter/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...