Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ann Bot ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527418

ABSTRACT

BACKGROUND AND AIMS: The geographic origin and evolutionary mechanisms underpinning the rich and distinctive New Caledonian flora remain poorly understood. This is due to the complex geological past of the island and to the scarcity of well-resolved species-level phylogenies. Here, we infer phylogenetic relationships and divergence times of New Caledonian palms, which comprise 40 species. We use this framework to elucidate the biogeography of New Caledonian palm lineages, and to explore how extant species may have formed. METHODS: A phylogenetic tree including 37 New Caledonian palm species and 77 relatives from tribe Areceae was inferred from 151 nuclear genes obtained by targeted sequencing. Fossil-calibrated divergence times were estimated, and ancestral ranges were inferred. Ancestral and extant ecological preferences in terms of elevation, precipitation and substrate were compared between New Caledonian sister species to explore their possible roles as drivers of speciation. KEY RESULTS: New Caledonian palms form four well-supported clades, inside which relationships are well resolved. Our results support the current classification, but suggest that Veillonia and Campecarpus should be resurrected, and fail to clarify whether Rhopalostylidinae is sister to or nested in Basseliniinae. New Caledonian palm lineages derive from New Guinean and Australian ancestors, which reached the island through at least three independent dispersal events between the Eocene and Miocene. Palms then dispersed out of New Caledonia at least five times, mainly towards Pacific islands. Geographic and ecological transitions associated with speciation events differed across time and genera. Substrate transitions were more frequently associated with older than younger events. CONCLUSIONS: Neighbouring areas and a mosaic of local habitats shaped New Caledonia's palm flora, and the island played a significant role in generating palm diversity across the Pacific region. This new spatio-temporal framework will enable population-level ecological and genetic studies to further unpick the mechanisms underpinning New Caledonian palm endemism.

2.
New Phytol ; 242(2): 700-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382573

ABSTRACT

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Subject(s)
Climate , Orchidaceae , Australia , Phylogeny , Phylogeography , Orchidaceae/genetics
3.
BMC Biol ; 21(1): 50, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36882831

ABSTRACT

BACKGROUND: Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS: Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS: The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.


Subject(s)
Arecaceae , Magnoliopsida , Arecaceae/genetics , Phylogeny , Genomics , Plastids/genetics
4.
New Phytol ; 236(2): 433-446, 2022 10.
Article in English | MEDLINE | ID: mdl-35717562

ABSTRACT

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Subject(s)
Arecaceae , Retroelements , Arecaceae/genetics , Evolution, Molecular , Genome Size , Genome, Plant , Phylogeny , Sequence Analysis, DNA
5.
Syst Biol ; 71(2): 301-319, 2022 02 10.
Article in English | MEDLINE | ID: mdl-33983440

ABSTRACT

The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this article are to (i) document our methods, (ii) describe our first data release, and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic data set for angiosperms to date, comprising 3099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96$\%$) and 2333 genera (17$\%$). A "first pass" angiosperm tree of life was inferred from the data, which totaled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated data set, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone toward a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardized nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections. [Angiosperms; Angiosperms353; genomics; herbariomics; museomics; nuclear phylogenomics; open access; target sequence capture; tree of life.].


Subject(s)
Magnoliopsida , Genomics , High-Throughput Nucleotide Sequencing , Humans , Magnoliopsida/genetics , Phylogeny
6.
Am J Bot ; 108(7): 1166-1180, 2021 07.
Article in English | MEDLINE | ID: mdl-34250591

ABSTRACT

PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.


Subject(s)
Genome, Plastid , Orchidaceae , Cell Nucleus/genetics , Orchidaceae/genetics , Phylogeny , Plastids/genetics
7.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Article in English | MEDLINE | ID: mdl-34297852

ABSTRACT

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Subject(s)
Magnoliopsida , Myrtales , Cell Nucleus , Magnoliopsida/genetics , Phylogeny
8.
Mol Biol Evol ; 38(10): 4475-4492, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34191029

ABSTRACT

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.


Subject(s)
Phoeniceae , Domestication , Egypt , Phoeniceae/genetics , Plant Breeding , Plant Leaves/genetics
9.
Mol Phylogenet Evol ; 157: 107067, 2021 04.
Article in English | MEDLINE | ID: mdl-33412273

ABSTRACT

Well-supported phylogenies are a prerequisite for the study of the evolution and diversity of life on earth. The subfamily Calamoideae accounts for more than one fifth of the palm family (Arecaceae), occurs in tropical rainforests across the world, and supports a billion-dollar industry in rattan products. It contains ca. 550 species in 17 genera, 10 subtribes and three tribes, but their phylogenetic relationships remain insufficiently understood. Here, we sequenced almost one thousand nuclear genomic regions for 75 systematically selected Calamoideae, representing the taxonomic diversity within all calamoid genera. Our phylogenomic analyses resolved a maximally supported phylogenetic backbone for the Calamoideae, including several higher-level relationships not previously inferred. In-depth analysis revealed low gene tree conflict for the backbone but complex deep evolutionary histories within several subtribes. Overall, our phylogenomic framework sheds new light on the evolution of palms and provides a robust foundation for future comparative studies, such as taxonomy, systematics, biogeography, and macroevolutionary research.


Subject(s)
Arecaceae/classification , Arecaceae/genetics , Phylogeny , Base Sequence , Biodiversity , Cell Nucleus/genetics , Exons/genetics , Genetic Markers , Genomics
10.
New Phytol ; 228(3): 1134-1148, 2020 11.
Article in English | MEDLINE | ID: mdl-32544251

ABSTRACT

Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated DNA and seed size data for the palm tribe Borasseae (Arecaceae) and its relatives, which show a wide diversity in seed size and include the double coconut (Lodoicea maldivica), the largest seed in the world. We inferred their phylogeny, dispersal history and rates of change in seed size, and evaluated the possible influence of plant size, inflorescence branching, habitat and insularity on these changes. Large seeds were involved in 10 oceanic dispersals. Following theoretical predictions, we found that: taller plants with fewer-branched inflorescences produced larger seeds; seed size tended to evolve faster on islands (except Madagascar); and seeds of shade-loving Borasseae tended to be larger. Plant size and inflorescence branching may constrain seed size in Borasseae and their relatives. The possible roles of insularity, habitat and dispersers are difficult to disentangle. Evolutionary contingencies better explain the gigantism of the double coconut than unusually high rates of seed size increase.


Subject(s)
Arecaceae , Seed Dispersal , Cocos , Ecosystem , Madagascar , Seeds/genetics
11.
Sci Rep ; 10(1): 488, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949198

ABSTRACT

Phylogenomic studies have so far mostly relied on genome skimming or target sequence capture, which suffer from representation bias and can fail to resolve relationships even with hundreds of loci. Here, we explored the potential of phylogenetic informativeness and tree confidence analyses to interpret phylogenomic datasets. We studied Cucurbitaceae because their small genome size allows cost-efficient genome skimming, and many relationships in the family remain controversial, preventing inferences on the evolution of characters such as sexual system or floral morphology. Genome skimming and PCR allowed us to retrieve the plastome, 57 single copy nuclear genes, and the nuclear ribosomal ITS from 29 species representing all but one tribe of Cucurbitaceae. Node support analyses revealed few inter-locus conflicts but a pervasive lack of phylogenetic signal among plastid loci, suggesting a fast divergence of Cucurbitaceae tribes. Data filtering based on phylogenetic informativeness and risk of homoplasy clarified tribe-level relationships, which support two independent evolutions of fringed petals in the family. Our study illustrates how formal analysis of phylogenomic data can increase our understanding of past diversification processes. Our data and results will facilitate the design of well-sampled phylogenomic studies in Cucurbitaceae and related families.


Subject(s)
Cell Nucleus/genetics , Cucurbitaceae/classification , Cucurbitaceae/genetics , Evolution, Molecular , Genome, Plastid , Phylogeny , Plastids/genetics , Internal Ribosome Entry Sites
12.
J Ethnopharmacol ; 249: 112368, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31678417

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The botanical identity of the ancient vernacular cynomorium does not correspond to the modern scientific genus while it is not clear how many species of hipocistis (Cytinus sp.) were differentiated by the ancient physicians and whether Cynomorium coccineum was subsumed. The early history of therapeutic uses related to the herbal drugs derived from these parasitic taxa is therefore not easily accessible. Cynomorium coccineum became an important pharmaceutical commodity after the Siege of Malta but its importance decreased in the 18th century and now is considered obsolete. MATERIAL AND METHODS: We compare the morphological, ecological and therapeutic information of Cynomorium and other parasitizing plant taxa across the past 2000 years and contextualize their uses with the pharmacological properties of their principal metabolites focusing on the raise and fall of C. coccineum as a medicine. RESULTS: The therapeutic uses of C. coccineum, the Maltese mushroom, seem to become clearly traceable since the Canon of Medicine by Avicenna. Styptic and astringent drugs such as Cynomorium, Cytinus but also gall apples and many others have been selected for their protein-linking capacity leading to the formation of a protective layer on the mucous membranes, which can be used to reduce the secretion of water and electrolytes in case of diarrhoea, dysentery and external bleedings. Whether C. coccineum is effective as a systemically applied anti-haemorrhagic drug is questionable. CONCLUSION: It appears that the vernacular cynomorium of the ancients corresponds to an edible Orobanche sp. while it remains doubtful whether the vernacular hipocistis was next to Cytinus sp. also applied to C. coccineum as evidence of C. coccineum parasitizing Cistus sp. is scarce. The isolation of gallic acid used as a styptic and the increasing availability of chemical styptics in the 18th century together with the availability of effective alternative anti-diarrhoeic drugs with a more reliable supply very probably led to the decline of the importance of the Maltese mushroom in pharmacy during the 18th century. The effectiveness of gallic acid as a systemic anti-haemorrhagic remains uncertain.


Subject(s)
Agaricales/chemistry , Astringents/pharmacology , Astringents/therapeutic use , Cynomorium/chemistry , Diarrhea/drug therapy , Hemorrhage/drug therapy , Animals , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Humans , Phytotherapy/methods
13.
Mol Phylogenet Evol ; 144: 106668, 2020 03.
Article in English | MEDLINE | ID: mdl-31682924

ABSTRACT

Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.


Subject(s)
Caryophyllales/classification , Caryophyllales/genetics , Phylogeny , Animals , Biological Evolution , Borneo , Carnivory , DNA, Plant/analysis , High-Throughput Nucleotide Sequencing , Indochina , Indonesia , Philippines , Phylogeography , Sequence Analysis, DNA , Seychelles
14.
Front Plant Sci ; 10: 1227, 2019.
Article in English | MEDLINE | ID: mdl-31681358

ABSTRACT

Arborescent succulent plants are regarded as keystone and indicator species in desert ecosystems due to their large stature and long lifespans. Tree aloes, the genus Aloidendron, are icons of the southern African deserts yet have proved elusive subjects due to the difficulty of obtaining material of known provenance for comparative study. Consequently, evolutionary relationships among representatives of the unusual arborescent life form have remained unclear until now. We used a museomics approach to overcome this challenge. Chloroplast genomes of six Aloidendron species and 12 other members of Asphodelaceae were sequenced from modern living collections and herbarium specimens, including the type specimens of all but two Aloidendron species, the earliest of which was collected 130 years ago. Maximum-likelihood trees estimated from full chloroplast genomes and the nuclear internal transcribed spacer (ITS) region show that Aloidendron sabaeum, from the Arabian Peninsula, is nested within Aloe while the Madagascar endemic Aloestrela suzannae is most closely related to the Somalian Aloidendron eminens. We observed phylogenetic conflicts between the plastid and nuclear topologies, which may be indicative of recurrent hybridisation or incomplete lineage sorting events in Aloe and in Aloidendron. Comparing species ecology in the context provided by our phylogeny suggests that habitat preference to either xeric deserts or humid forests/thickets evolved repeatedly in Aloidendron. Our findings demonstrate the value of botanical collections for the study and classification of taxonomically challenging succulent plants.

15.
Front Plant Sci ; 10: 1102, 2019.
Article in English | MEDLINE | ID: mdl-31620145

ABSTRACT

The world's herbaria collectively house millions of diverse plant specimens, including endangered or extinct species and type specimens. Unlocking genetic data from the typically highly degraded DNA obtained from herbarium specimens was difficult until the arrival of high-throughput sequencing approaches, which can be applied to low quantities of severely fragmented DNA. Target enrichment involves using short molecular probes that hybridise and capture genomic regions of interest for high-throughput sequencing. In this study on herbariomics, we used this targeted sequencing approach and the Angiosperms353 universal probe set to recover up to 351 nuclear genes from 435 herbarium specimens that are up to 204 years old and span the breadth of angiosperm diversity. We show that on average 207 genes were successfully retrieved from herbarium specimens, although the mean number of genes retrieved and target enrichment efficiency is significantly higher for silica gel-dried specimens. Forty-seven target nuclear genes were recovered from a herbarium specimen of the critically endangered St Helena boxwood, Mellissia begoniifolia, collected in 1815. Herbarium specimens yield significantly less high-molecular-weight DNA than silica gel-dried specimens, and genomic DNA quality declines with sample age, which is negatively correlated with target enrichment efficiency. Climate, taxon-specific traits, and collection strategies additionally impact target sequence recovery. We also detected taxonomic bias in targeted sequencing outcomes for the 10 most numerous angiosperm families that were investigated in depth. We recommend that (1) for species distributed in wet tropical climates, silica gel-dried specimens should be used preferentially; (2) for species distributed in seasonally dry tropical climates, herbarium and silica gel-dried specimens yield similar results, and either collection can be used; (3) taxon-specific traits should be explored and established for effective optimisation of taxon-specific studies using herbarium specimens; (4) all herbarium sheets should, in future, be annotated with details of the preservation method used; (5) long-term storage of herbarium specimens should be in stable, low-humidity, and low-temperature environments; and (6) targeted sequencing with universal probes, such as Angiosperms353, should be investigated closely as a new approach for DNA barcoding that will ensure better exploitation of herbarium specimens than traditional Sanger sequencing approaches.

16.
Antioxidants (Basel) ; 8(8)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394783

ABSTRACT

In the continuous scientific search for new safe and effective drugs, there has recently been a rediscovery of natural substances as a potential reservoir of innovative therapeutic solutions for human health, with the prospect of integrating with and sometimes replacing conventional drugs. Cynomorium coccineum subsp. coccineum is a holoparasitic plant well known in ethnopharmacology, although its current use as a curative remedy is reported only in some ethnic groups of North Africa and the Arabian Peninsula. Often known as 'Maltese mushroom' due to its unique appearance and the absence of chlorophyll, C. coccineum is present in almost all of the Mediterranean Basin. It is only recently that a few research groups have begun to look for confirmation of some of its traditional uses to highlight previously unknown biological activities. Here, we review the recent scientific findings on the plant's phytochemistry and the most significant descriptions of some of its antioxidant and biological activities (antimicrobial, anticancer, pro-erectile, and anti-tyrosinase enzyme) both in vivo and in vitro. Some of these may be promising from the perspective of food and cosmetic formulations. The purpose of this review is to provide an initial impetus to those who, in the foreseeable future, will want to increase the knowledge and possible applications of this plant full of history, charm, and mystery.

18.
Proc Natl Acad Sci U S A ; 113(32): 9045-50, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27450087

ABSTRACT

Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.


Subject(s)
Evolution, Molecular , Plants/genetics , Genome, Plastid , Parasitic Diseases/genetics , Photosynthesis , Phylogeny , Plastids/metabolism , Selection, Genetic
19.
Genome Biol Evol ; 8(7): 2214-30, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27358425

ABSTRACT

Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites' occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers.


Subject(s)
Cynomorium/genetics , Genome, Mitochondrial , Genome, Plastid , Saxifragaceae/genetics , Contig Mapping , Evolution, Molecular , Gene Transfer, Horizontal , RNA, Ribosomal/genetics
20.
Plant J ; 88(3): 387-396, 2016 11.
Article in English | MEDLINE | ID: mdl-27354172

ABSTRACT

Few angiosperms have distinct Y chromosomes. Among those that do are Silene latifolia (Caryophyllaceae), Rumex acetosa (Polygonaceae) and Coccinia grandis (Cucurbitaceae), the latter having a male/female difference of 10% of the total genome (female individuals have a 0.85 pg genome, male individuals 0.94 pg), due to a Y chromosome that arose about 3 million years ago. We compared the sequence composition of male and female C. grandis plants and determined the chromosomal distribution of repetitive and organellar DNA with probes developed from 21 types of repetitive DNA, including 16 mobile elements. The size of the Y chromosome is largely due to the accumulation of certain repeats, such as members of the Ty1/copia and Ty3/gypsy superfamilies, an unclassified element and a satellite, but also plastome- and chondriome-derived sequences. An abundant tandem repeat with a unit size of 144 bp stains the centromeres of the X chromosome and the autosomes, but is absent from the Y centromere. Immunostaining with pericentromere-specific markers for anti-histone H3Ser10ph and H2AThr120ph revealed a Y-specific extension of these histone marks. That the Y centromere has a different make-up from all the remaining centromeres raises questions about its spindle attachment, and suggests that centromeric or pericentromeric chromatin might be involved in the suppression of recombination.


Subject(s)
Chromosomes, Plant/genetics , DNA Transposable Elements/genetics , DNA, Plant/genetics , Chromosomes, Plant/physiology , Genome, Plant/genetics , Genome, Plant/physiology , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...