Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Autophagy ; : 1-10, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545813

ABSTRACT

Sarcopenia is a major contributor to disability in older adults, and thus, it is key to elucidate the mechanisms underlying its development. Increasing evidence suggests that impaired macroautophagy/autophagy contributes to the development of sarcopenia. However, the mechanisms leading to reduced autophagy during aging remain largely unexplored, and whether autophagy activation protects from sarcopenia has not been fully addressed. Here we show that the autophagy regulator TP53INP2/TRP53INP2 is decreased during aging in mouse and human skeletal muscle. Importantly, chronic activation of autophagy by muscle-specific overexpression of TRP53INP2 prevents sarcopenia and the decline of muscle function in mice. Acute re-expression of TRP53INP2 in aged mice also improves muscle atrophy, enhances mitophagy, and reduces ROS production. In humans, high levels of TP53INP2 in muscle are associated with increased muscle strength and healthy aging. Our findings highlight the relevance of an active muscle autophagy in the maintenance of muscle mass and prevention of sarcopenia.Abbreviation: ATG7: autophagy related 7; BMI: body mass index; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ROS: reactive oxygen species; TP53INP2: tumor protein p53 inducible nuclear protein 2; WT: wild type.

2.
J Cachexia Sarcopenia Muscle ; 14(6): 2692-2702, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743227

ABSTRACT

BACKGROUND: Small non-coding (snc)RNAs, including microRNAs and P-element induced wimpy testis (PIWI)-interacting-RNAs (piRNAs), crucially regulate gene expression in both physiological and pathological conditions. In particular, some muscle-specific microRNAs (myomiRs) have been involved in the pathogenesis of cancer-induced muscle wasting. The aims of the present study were (i) to profile sncRNAs in both skeletal muscle and plasma of gastrointestinal cancer patients and (ii) to investigate the association among differentially expressed sncRNAs and the level of muscularity at body composition analysis. METHODS: Surgical patients with gastrointestinal cancer or benign disease were recruited. Blood samples and muscle biopsies (rectus abdominis) were collected during surgery. Low muscularity patients were those at the lowest tertile of skeletal muscle index (SMI; CT-scan), whereas moderate/high muscularity patients were in the middle and highest SMI tertiles. SncRNAs in the muscle were assessed by RNAseq, circulating microRNAs were evaluated by qPCR. RESULTS: Cancer patients (n = 25; 13 females, 52%) showed a mean age of 71.6 ± 11.2 years, a median body weight loss of 4.2% and a mean BMI of 27.0 ± 3.2 kg/m2 . Control group (n = 15; 9 females, 60%) showed a mean age 58.1 ± 13.9 years and a mean BMI of 28.0 ± 4.3 kg/m2 . In cancer patients, the median L3-SMI (cm2 /m2 ) was 42.52 (34.42; 49.07). Males showed a median L3-SMI of 46.08 (41.17-51.79) and females a median L3-SMI of 40.77 (33.73-42.87). Moderate-high and low muscularity groups included 17 and 8 patients, respectively. As for circulating microRNAs, miR-21-5p and miR-133a-3p were up-regulated in patients compared with controls, whereas miR-15b-5p resulted down-regulated in the same comparison (about 30% of control values). Sample clustering by muscularity and sex revealed increased miR-133a-3p and miR-206 only in moderate-high muscularity males. SncRNA profiling in the muscle identified 373 microRNAs and 190 piRNAs (72.5% and 18.7% of raw reads, respectively). As for microRNAs, 10 were up-regulated, and 56 were down-regulated in cancer patients versus controls. Among the 24 dysregulated piRNAs, the majority were down-regulated, including the top two most expressed piRNAs in the muscle (piR-12790 and piR-2106). Network analysis on validated mRNA targets of down-regulated microRNAs revealed miR-15b-5p, miR-106a-5p and miR-106b-5p as main interactors of genes related to ubiquitin ligase/transferase activities. CONCLUSIONS: These results show dysregulation of both muscle microRNAs and piRNAs in cancer patients compared with controls, the former following a sex-specific pattern. Changes in circulating microRNAs are associated with the degree of muscularity rather than body weight loss.


Subject(s)
Circulating MicroRNA , Gastrointestinal Neoplasms , MicroRNAs , RNA, Small Untranslated , Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Adult , RNA, Small Untranslated/genetics , Piwi-Interacting RNA , Gene Expression Profiling , MicroRNAs/metabolism , Weight Loss
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108625

ABSTRACT

Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Glycolysis , Tumor Microenvironment , Immunity
4.
Nat Commun ; 14(1): 1849, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012289

ABSTRACT

Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NAD+ in the pathophysiology of human cancer cachexia. Overall, our results propose NAD+ metabolism as a therapy target for cachectic cancer patients.


Subject(s)
Neoplasms , Niacin , Humans , Mice , Animals , Niacin/pharmacology , Niacin/therapeutic use , Niacin/metabolism , NAD/metabolism , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Niacinamide/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/metabolism , Muscle, Skeletal/metabolism
5.
iScience ; 25(11): 105480, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388980

ABSTRACT

Skeletal muscle repair is accomplished by satellite cells (MuSCs) in cooperation with interstitial stromal cells (ISCs), but the relationship between the function of these cells and the metabolic state of myofibers remains unclear. This study reports an altered proportion of MuSCs and ISCs (including adipogenesis-regulatory cells; Aregs) induced by the transgenic overexpression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the myofibers (MCK-PGC-1α mice). Although PGC-1α-driven increase of MuSCs does not accelerate muscle regeneration, myogenic progenitors isolated from MCK-PGC-1α mice and transplanted into intact and regenerating muscles are more prone to fuse with recipient myofibers than those derived from wild-type donors. Moreover, both young and aged MCK-PGC-1α animals exhibit reduced perilipin-positive areas when challenged with an adipogenic stimulus, demonstrating low propensity to accumulate adipocytes within the muscle. Overall, these results unveil that increased PGC-1α expression in the myofibers favors pro-myogenic and anti-adipogenic cell populations in the skeletal muscle.

6.
Cells ; 11(21)2022 10 24.
Article in English | MEDLINE | ID: mdl-36359747

ABSTRACT

Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.


Subject(s)
Induced Pluripotent Stem Cells , Neuromuscular Junction , Spastic Paraplegia, Hereditary , Humans , Adenosine Triphosphatases/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/pathology , Neuromuscular Junction/cytology , Neuromuscular Junction/pathology , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Spastin/metabolism
7.
J Cachexia Sarcopenia Muscle ; 13(1): 481-494, 2022 02.
Article in English | MEDLINE | ID: mdl-34931471

ABSTRACT

BACKGROUND: Cachexia, a syndrome frequently occurring in cancer patients, is characterized by muscle wasting, altered energy and protein metabolism and impaired myogenesis. Tumour-derived microvesicles (TMVs) containing proteins, messenger RNAs (mRNAs), and non-coding RNAs could contribute to cancer-induced muscle wasting. METHODS: Differential ultracentrifugation was used to isolate TMVs from the conditioned medium of Lewis lung carcinoma and C26 colon carcinoma cell cultures. TMVs were added to the culture medium of C2C12 myoblasts and myotubes for 24-48-72 h, and the effects on protein and energy metabolism were assessed. TMVs were also isolated from the blood of C26-bearing mice. MicroRNA (miR) profile of TMVs was obtained by RNA-seq and validated by digital drop PCR. Selected miRs were overexpressed in C2C12 myoblasts to assess the effects on myogenic differentiation. RESULTS: Differentiation was delayed in C2C12 myoblasts exposed to TMVs, according to reduced expression of myosin heavy chain (MyHC; about 62% of controls at Day 4) and myogenin (about 68% of controls at Day 4). As for myotubes, TMVs did not affect the expression of MyHC, while revealed able to modulate mitochondria and oxidative metabolism. Indeed, reduced mRNA levels of PGC-1α (C = 1 ± 0.2, TMV = 0.57 ± 0.06, normalized fold change, P < 0.05) and Cytochrome C (C = 1 ± 0.2, TMV = 0.65 ± 0.04, normalized fold change, P < 0.05), associated with increased BNIP3 expression (C = 1 ± 0.1, TMV = 1.29 ± 0.2, normalized fold change, P < 0.05), were observed, suggesting reduced mitochondrial biogenesis/amount and enhanced mitophagy. These changes were paralleled by decreased oxygen consumption (C = 686.9 ± 44 pmol/min, TMV = 552.25 ± 24 pmol/min, P < 0.01) and increased lactate levels (C = 0.0063 ± 0.00045 nmol/µL, TMV = 0.0094 ± 0.00087 nmol/µL, P < 0.01). A total of 118 miRs were found in MVs derived from the plasma of the C26 hosts; however, only three of them were down-regulated (RNA-seq): miR-181a-5p (-1.46 fold change), miR-375-3p (-2.52 fold change), and miR-455-5p (-3.87 fold change). No correlation could be observed among miRs in the MVs obtained from the blood of the C26 host and those released by C26 cells in the culture medium. Overexpression of miR-148a-3p and miR-181a-5p in C2C12 myoblasts revealed the ability to impinge on the mRNA levels of Myf5, Myog, and MyHC (Myh4 and Myh7). CONCLUSIONS: These results show that in C2C12 cultures, TMVs are able to affect both differentiation and the mitochondrial system. Such effects could be related to TMV-contained miRs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neoplasms , Animals , Cell Line , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Neoplasms/metabolism
8.
Cells ; 10(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34831373

ABSTRACT

Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients' quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.


Subject(s)
Cachexia/pathology , Mitochondria/pathology , Muscles/physiopathology , Neoplasms/pathology , Regeneration , Animals , Cachexia/complications , Humans , Muscle Development , Neoplasms/complications
9.
Cancers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670497

ABSTRACT

Objective: Cachexia is a complex metabolic syndrome frequently occurring in cancer patients and exacerbated by chemotherapy. In skeletal muscle of cancer hosts, reduced oxidative capacity and low intracellular ATP resulting from abnormal mitochondrial function were described. Methods: The present study aimed at evaluating the ability of the mitochondria-targeted compound SS-31 to counteract muscle wasting and altered metabolism in C26-bearing (C26) mice either receiving chemotherapy (OXFU: oxaliplatin plus 5-fluorouracil) or not. Results: Mitochondrial dysfunction in C26-bearing (C26) mice associated with alterations of cardiolipin fatty acid chains. Selectively targeting cardiolipin with SS-31 partially counteracted body wasting and prevented the reduction of glycolytic myofiber area. SS-31 prompted muscle mitochondrial succinate dehydrogenase (SDH) activity and rescued intracellular ATP levels, although it was unable to counteract mitochondrial protein loss. Progressively increased dosing of SS-31 to C26 OXFU mice showed transient (21 days) beneficial effects on body and muscle weight loss before the onset of a refractory end-stage condition (28 days). At day 21, SS-31 prevented mitochondrial loss and abnormal autophagy/mitophagy. Skeletal muscle, liver and plasma metabolomes were analyzed, showing marked energy and protein metabolism alterations in tumor hosts. SS-31 partially modulated skeletal muscle and liver metabolome, likely reflecting an improved systemic energy homeostasis. Conclusions: The results suggest that targeting mitochondrial function may be as important as targeting protein anabolism/catabolism for the prevention of cancer cachexia. With this in mind, prospective multi-modal therapies including SS-31 are warranted.

10.
Front Physiol ; 10: 41, 2019.
Article in English | MEDLINE | ID: mdl-30833900

ABSTRACT

The management of cancer patients is frequently complicated by the occurrence of cachexia. This is a complex syndrome that markedly impacts on quality of life as well as on tolerance and response to anticancer treatments. Loss of body weight, wasting of both adipose tissue and skeletal muscle and reduced survival rates are among the main features of cachexia. Skeletal muscle wasting has been shown to depend, mainly at least, on the induction of protein degradation rates above physiological levels. Such hypercatabolic pattern is driven by overactivation of different intracellular proteolytic systems, among which those dependent on ubiquitin-proteasome and autophagy. Selective rather than bulk degradation of altered proteins and organelles was also proposed to occur. Within the picture described above, the muscle is frequently considered a sort of by-stander tissue where external stimuli, directly or indirectly, can poise protein metabolism toward a catabolic setting. By contrast, several observations suggest that the muscle reacts to the wasting drive imposed by cancer growth by activating different compensatory strategies that include anabolic capacity, the activation of autophagy and myogenesis. Even if muscle response is eventually ill-fated, its occurrence supports the idea that in the presence of appropriate treatments the development of cancer-induced wasting might not be an ineluctable event in tumor hosts.

11.
Med Sci Sports Exerc ; 51(7): 1387-1395, 2019 07.
Article in English | MEDLINE | ID: mdl-30724848

ABSTRACT

INTRODUCTION: Cancer cachexia is characterized by loss of muscle mass and function. Increased protein catabolism, inflammation, impaired anabolism, and mitochondrial function markedly contribute to the pathogenesis of this syndrome. Physical activity has been suggested as a useful tool to prevent or at least delay the onset and progression of cancer-induced muscle wasting. Two main types of exercise can be adopted, namely, resistance and endurance training. The present study is aimed to investigate the effectiveness of a combined (resistance + endurance) exercise protocol in preventing/reverting cancer-induced muscle wasting. METHODS: Mice bearing the C26 colon carcinoma have been used as a model of cancer cachexia. They have been exposed to combined exercise training during 6 wk (4 before tumor implantation, 2 during tumor growth). Climbing a 1-m ladder inclined at 85° has been used for resistance training, while aerobic (endurance) exercise has been carried out on the same day using a motorized wheel. RESULTS: In C26-bearing mice, both muscle mass and strength are improved by combined training, while just the latter increased in exercised healthy animals. Such a pattern is associated with modulations of two markers of autophagy, namely, LC3B-I/II ratio, increased in sedentary tumor hosts and reduced in exercised C26-bearing mice, and p62, steadily increased in both sedentary and trained tumor-bearing animals. Finally, combined training is not able to modify PGC-1α protein levels, but it improves succinate dehydrogenase activity, both reduced in the muscle of the C26 hosts. CONCLUSION: The data reported in the present study show that combined training improves muscle mass and function in the C26 hosts, likely modulating autophagy and improving mitochondrial function; these observations suggest that combined exercise might become part of a multimodal approach to treat cancer cachexia.


Subject(s)
Cachexia/prevention & control , Carcinoma/complications , Colonic Neoplasms/complications , Muscular Atrophy/prevention & control , Physical Conditioning, Animal/methods , Animals , Autophagy/physiology , Cachexia/etiology , Carcinoma/metabolism , Colonic Neoplasms/metabolism , Disease Models, Animal , Humans , Male , Mice, Inbred BALB C , Microtubule-Associated Proteins/metabolism , Mitochondria, Muscle/metabolism , Muscle Proteins/metabolism , Muscular Atrophy/etiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Random Allocation , Resistance Training , Succinate Dehydrogenase/metabolism
12.
FASEB J ; 33(4): 5482-5494, 2019 04.
Article in English | MEDLINE | ID: mdl-30653354

ABSTRACT

Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and mitochondrial function. Nevertheless, exercise worsened survival in C26 oxfu mice in late stages of cachexia. In summary, chemotherapy further impinges on cancer-induced alterations, worsening muscle wasting. An ideal multifactorial and early intervention to prevent cancer cachexia could take advantage of exercise, improving patient's energy metabolism, mobility, and quality of life.-Ballarò, R., Beltrà, M., De Lucia, S., Pin, F., Ranjbar, K., Hulmi, J. J., Costelli, P., Penna, F. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations.


Subject(s)
Antineoplastic Agents/adverse effects , Mitochondria/physiology , Muscle, Skeletal/physiopathology , Muscular Atrophy/chemically induced , Muscular Atrophy/physiopathology , Neoplasms/physiopathology , Physical Conditioning, Animal/physiology , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/physiology , Cachexia/chemically induced , Cachexia/physiopathology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Male , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Muscle, Skeletal/drug effects , Neoplasms/drug therapy , Quality of Life
13.
Oxid Med Cell Longev ; 2018: 7153610, 2018.
Article in English | MEDLINE | ID: mdl-29785246

ABSTRACT

Muscle wasting is one of the main features of cancer cachexia, a multifactorial syndrome frequently occurring in oncologic patients. The onset of cachexia is associated with reduced tolerance and response to antineoplastic treatments, eventually leading to clinical conditions that are not compatible with survival. Among the mechanisms underlying cachexia, protein and energy dysmetabolism play a major role. In this regard, several potential treatments have been proposed, mainly on the basis of promising results obtained in preclinical models. However, at present, no treatment yet reached validation to be used in the clinical practice, although several drugs are currently tested in clinical trials for their ability to improve muscle metabolism in cancer patients. Along this line, the results obtained in both experimental and clinical studies clearly show that cachexia can be effectively approached by a multidirectional strategy targeting nutrition, inflammation, catabolism, and inactivity at the same time. In the present study, approaches aimed to modulate muscle metabolism in cachexia will be reviewed.


Subject(s)
Muscle, Skeletal/metabolism , Neoplasms/pathology , AMP-Activated Protein Kinases/metabolism , Adipose Tissue/metabolism , Cachexia , Energy Metabolism , Humans , Neoplasms/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism
14.
Front Physiol ; 8: 184, 2017.
Article in English | MEDLINE | ID: mdl-28424626

ABSTRACT

Bed rest has been an established treatment in the past prescribed for critically illness or convalescing patients, in order to preserve their body metabolic resource, to prevent serious complications and to support their rapid path to recovery. However, it has been reported that prolonged bed rest can have detrimental consequences that may delay or prevent the recovery from clinical illness. In order to study disuse-induced changes in muscle and bone, as observed during prolonged bed rest in humans, an innovative new model of muscle disuse for rodents is presented. Basically, the animals are confined to a reduced space designed to restrict their locomotion movements and allow them to drink and eat easily, without generating physical stress. The animals were immobilized for either 7, 14, or 28 days. The immobilization procedure induced a significant decrease of food intake, both at 14 and 28 days of immobilization. The reduced food intake was not a consequence of a stress condition induced by the model since plasma corticosterone levels -an indicator of a stress response- were not altered following the immobilization period. The animals showed a significant decrease in soleus muscle mass, grip force and cross-sectional area (a measure of fiber size), together with a decrease in bone mineral density. The present model may potentially serve to investigate the effects of bed-rest in pathological states characterized by a catabolic condition, such as diabetes or cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...