Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
medRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746462

ABSTRACT

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

2.
J Neuromuscul Dis ; 11(3): 647-653, 2024.
Article in English | MEDLINE | ID: mdl-38489196

ABSTRACT

Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.


Subject(s)
Mosaicism , Phenotype , Ryanodine Receptor Calcium Release Channel , Humans , Genetic Association Studies , Myotonia Congenita/genetics , Myotonia Congenita/diagnosis , Ryanodine Receptor Calcium Release Channel/genetics , Male , Child, Preschool
3.
Nat Commun ; 15(1): 1227, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418480

ABSTRACT

Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.


Subject(s)
Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/diagnosis , Neuromuscular Junction/metabolism , Rare Diseases/metabolism , Workflow , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Mutation
4.
Cerebellum ; 23(2): 391-400, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36869969

ABSTRACT

The Ataxia Global Initiative (AGI) is a worldwide multi-stakeholder research platform to systematically enhance trial-readiness in degenerative ataxias. The next-generation sequencing (NGS) working group of the AGI aims to improve methods, platforms, and international standards for ataxia NGS analysis and data sharing, ultimately allowing to increase the number of genetically ataxia patients amenable for natural history and treatment trials. Despite extensive implementation of NGS for ataxia patients in clinical and research settings, the diagnostic gap remains sizeable, as approximately 50% of patients with hereditary ataxia remain genetically undiagnosed. One current shortcoming is the fragmentation of patients and NGS datasets on different analysis platforms and databases around the world. The AGI NGS working group in collaboration with the AGI associated research platforms-CAGC, GENESIS, and RD-Connect GPAP-provides clinicians and scientists access to user-friendly and adaptable interfaces to analyze genome-scale patient data. These platforms also foster collaboration within the ataxia community. These efforts and tools have led to the diagnosis of > 500 ataxia patients and the discovery of > 30 novel ataxia genes. Here, the AGI NGS working group presents their consensus recommendations for NGS data sharing initiatives in the ataxia field, focusing on harmonized NGS variant analysis and standardized clinical and metadata collection, combined with collaborative data and analysis tool sharing across platforms.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Humans , Cerebellar Ataxia/genetics , Databases, Factual , High-Throughput Nucleotide Sequencing/methods , Information Dissemination
5.
Eur J Hum Genet ; 32(2): 182-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926714

ABSTRACT

Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research Consortium (IRDiRC)'s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy, we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM) were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest (pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort.


Subject(s)
Genomics , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Phenotype , Chromosome Mapping
6.
An. pediatr. (2003. Ed. impr.) ; 99(6): 422-430, Dic. 2023. ilus, tab
Article in English, Spanish | IBECS | ID: ibc-228664

ABSTRACT

Hasta un 15-20% de adolescentes tienen algún problema de salud crónico. La adolescencia representa un periodo de riesgo especial para la evolución de las enfermedades crónicas, tanto en aquellos con padecimientos con mayor prevalencia como en los afectados por enfermedades raras. La transición de la asistencia pediátrica a la adulta empieza con la preparación y capacitación del paciente pediátrico, acostumbrado a los cuidados tutelados, para que asuma la responsabilidad de su autocuidado en una unidad de adultos. La transferencia es el momento en el que la persona joven pasa a los servicios de adultos y es dada de alta de los servicios pediátricos. La transición sólo se completa cuando los jóvenes están integrados y funcionan con total competencia dentro del servicio de adultos. Los profesionales de adultos tienen un rol crucial al momento de recibir e integrar a los adultos jóvenes. Un programa de transición puede incluir transiciones de diferente complejidad, desde enfermedades frecuentes y conocidas como el asma, que requieren un proceso más sencillo, hasta enfermedades raras complejas con necesidad de participación de personal muy especializado. La transición requiere un trabajo en equipo con participación de numerosos profesionales: pediatras y médicos de adultos, enfermeras, psicólogos clínicos, trabajadores sociales sanitarios, equipo de Farmacia, y personal administrativo. Es importante implicar a los adolescentes en la toma de decisiones y que los padres los dejen ir progresivamente. Un programa de transición bien estructurado puede mejorar los resultados en salud, la experiencia del paciente y la utilización y coste de los cuidados sanitarios.(AU)


Up to 15%–20% of adolescents have a chronic health problem. Adolescence is a period of particular risk for the development or progression of chronic diseases for both individuals with more prevalent conditions and those affected by rare diseases. The transition from paediatric to adult care begins with preparing and training the paediatric patient, accustomed to supervised care, to assume responsibility for their self-care in an adult care setting. The transition takes place when the young person is transferred to adult care and discharged from paediatric care services. It is only complete when the youth is integrated and functioning competently within the adult care system. Adult care providers play a crucial role in welcoming and integrating young adults. A care transition programme can involve transitions of varying complexity, ranging from those required for common and known diseases such as asthma, whose management is more straightforward, to rare complex disorders requiring highly specialized personnel.(AU)


Subject(s)
Humans , Male , Female , Adolescent , Young Adult , Adult , Transitional Care , Adolescent , Chronic Disease/nursing , Adolescent Behavior , Adolescent Health , Adolescent Development
7.
An Pediatr (Engl Ed) ; 99(6): 422-430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016858

ABSTRACT

Up to 15-20% of adolescents have a chronic health problem. Adolescence is a period of particular risk for the development or progression of chronic diseases for both individuals with more prevalent conditions and those affected by rare diseases. The transition from paediatric to adult care begins with preparing and training the paediatric patient, accustomed to supervised care, to assume responsibility for their self-care in an adult care setting. The transition takes place when the young person is transferred to adult care and discharged from paediatric care services. It is only complete when the youth is integrated and functioning competently within the adult care system. Adult care providers play a crucial role in welcoming and integrating young adults. A care transition programme can involve transitions of varying complexity, ranging from those required for common and known diseases such as asthma, whose management is more straightforward, to rare complex disorders requiring highly specialized personnel. The transition requires teamwork with the participation of numerous professionals: paediatricians and adult care physicians, nurses, clinical psychologists, health social workers, the pharmacy team and administrative staff. It is essential to involve adolescents in decision-making and for parents to let them take over gradually. A well-structured transition programme can improve health outcomes, patient experience, the use of health care resources and health care costs.


Subject(s)
Transition to Adult Care , Young Adult , Humans , Adolescent , Child , Adult , Health Care Costs , Parents
8.
PLoS One ; 18(11): e0293503, 2023.
Article in English | MEDLINE | ID: mdl-37992053

ABSTRACT

Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.


Subject(s)
Neonatal Screening , Rare Diseases , Infant, Newborn , Humans , Child , Neonatal Screening/methods , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Artificial Intelligence , Digital Technology , Europe
9.
Sci Rep ; 13(1): 18997, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923774

ABSTRACT

Somatic single-nucleotide variants (SNVs) occur every time a cell divides, appearing even in healthy tissues at low frequencies. These mutations may accumulate as neutral variants during aging, or eventually, promote the development of neoplasia. Here, we present the SP-ddPCR, a droplet digital PCR (ddPCR) based approach that utilizes customized SuperSelective primers aiming at quantifying the proportion of rare SNVs. For that purpose, we selected five potentially pathogenic variants identified by whole-exome sequencing (WES) occurring at low variant allele frequency (VAF) in at-risk colon healthy mucosa of patients diagnosed with colorectal cancer or advanced adenoma. Additionally, two APC SNVs detected in two cancer lesions were added to the study for WES-VAF validation. SuperSelective primers were designed to quantify SNVs at low VAFs both in silico and in clinical samples. In addition to the two APC SNVs in colonic lesions, SP-ddPCR confirmed the presence of three out of five selected SNVs in the normal colonic mucosa with allelic frequencies ≤ 5%. Moreover, SP-ddPCR showed the presence of two potentially pathogenic variants in the distal normal mucosa of patients with colorectal carcinoma. In summary, SP-ddPCR offers a rapid and feasible methodology to validate next-generation sequencing data and accurately quantify rare SNVs, thus providing a potential tool for diagnosis and stratification of at-risk patients based on their mutational profiling.


Subject(s)
Neoplasms , Humans , Mutation , DNA Primers , Colon , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods
10.
Genome Med ; 15(1): 68, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679823

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS: We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS: ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS: ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.


Subject(s)
Algorithms , Genomics , Humans , Prospective Studies , Databases, Factual , Genetic Association Studies
12.
Epigenetics ; 18(1): 2230670, 2023 12.
Article in English | MEDLINE | ID: mdl-37409354

ABSTRACT

Epimutations are rare alterations of the normal DNA methylation pattern at specific loci, which can lead to rare diseases. Methylation microarrays enable genome-wide epimutation detection, but technical limitations prevent their use in clinical settings: methods applied to rare diseases' data cannot be easily incorporated to standard analyses pipelines, while epimutation methods implemented in R packages (ramr) have not been validated for rare diseases. We have developed epimutacions, a Bioconductor package (https://bioconductor.org/packages/release/bioc/html/epimutacions.html). epimutacions implements two previously reported methods and four new statistical approaches to detect epimutations, along with functions to annotate and visualize epimutations. Additionally, we have developed an user-friendly Shiny app to facilitate epimutations detection (https://github.com/isglobal-brge/epimutacionsShiny) to non-bioinformatician users. We first compared the performance of epimutacions and ramr packages using three public datasets with experimentally validated epimutations. Methods in epimutacions had a high performance at low sample sizes and outperformed methods in ramr. Second, we used two general population children cohorts (INMA and HELIX) to determine the technical and biological factors that affect epimutations detection, providing guidelines on how designing the experiments or preprocessing the data. In these cohorts, most epimutations did not correlate with detectable regional gene expression changes. Finally, we exemplified how epimutacions can be used in a clinical context. We run epimutacions in a cohort of children with autism disorder and identified novel recurrent epimutations in candidate genes for autism. Overall, we present epimutacions a new Bioconductor package for incorporating epimutations detection to rare disease diagnosis and provide guidelines for the design and data analyses.


Subject(s)
DNA Methylation , Software , Child , Humans , Rare Diseases , Genome
13.
Cell Genom ; 3(2): 100246, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819661

ABSTRACT

The Solve-RD project objectives include solving undiagnosed rare diseases (RD) through collaborative research on shared genome-phenome datasets. The RD-Connect Genome-Phenome Analysis Platform (GPAP), for data collation and analysis, and the European Genome-Phenome Archive (EGA), for file storage, are two key components of the Solve-RD infrastructure. Clinical researchers can identify candidate genetic variants within the RD-Connect GPAP and, thanks to the developments presented here as part of joint ELIXIR activities, are able to remotely visualize the corresponding alignments stored at the EGA. The Global Alliance for Genomics and Health (GA4GH) htsget streaming application programming interface (API) is used to retrieve alignment slices, which are rendered by an integrated genome viewer (IGV) instance embedded in the GPAP. As a result, it is no longer necessary for over 11,000 datasets to download large alignment files to visualize them locally. This work highlights the advantages, from both the user and infrastructure perspectives, of implementing interoperability standards for establishing federated genomics data networks.

15.
Eur J Hum Genet ; 30(9): 1017-1021, 2022 09.
Article in English | MEDLINE | ID: mdl-35577938

ABSTRACT

In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.


Subject(s)
Exome , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing
16.
J Mol Diagn ; 24(5): 529-542, 2022 05.
Article in English | MEDLINE | ID: mdl-35569879

ABSTRACT

Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).


Subject(s)
Genomics , Rare Diseases , Computational Biology , Exome , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Exome Sequencing
17.
Neurology ; 98(9): e912-e923, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35012964

ABSTRACT

BACKGROUND AND OBJECTIVES: Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. METHODS: A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. RESULTS: We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. DISCUSSION: Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.


Subject(s)
Central Nervous System Diseases , Exome , White Matter , Base Sequence , Central Nervous System Diseases/genetics , Exome/genetics , Humans , White Matter/pathology , Exome Sequencing , Whole Genome Sequencing
18.
Brain ; 145(4): 1507-1518, 2022 05 24.
Article in English | MEDLINE | ID: mdl-34791078

ABSTRACT

Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two per cent of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialized bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.


Subject(s)
Exome , Consanguinity , Exome/genetics , Homozygote , Humans , Mutation , Pedigree , Phenotype , Exome Sequencing
19.
Genes (Basel) ; 12(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34946927

ABSTRACT

Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their discovery in targeted sequencing is a challenging task. Different tools have been developed to disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in comparison with state-of-the-art algorithms that each missed at least one event. We then applied our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or integrated within our recently developed software, enabling the automated selection of samples using the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.


Subject(s)
DNA Copy Number Variations/genetics , Sequence Analysis, DNA/methods , Sequence Deletion/genetics , Algorithms , Animals , Base Sequence/genetics , Exome/genetics , Exons/genetics , High-Throughput Nucleotide Sequencing/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...