Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38869532

ABSTRACT

Defect manipulation in metal oxide is of great importance in boosting catalytic performance for propane oxidation. Herein, a selective atom removal strategy was developed to construct a defective manganese oxide catalyst, which involved the partial etching of a Mg dopant in MnOx. The resulting MgMnOx-H catalysts exhibited superior low-temperature catalytic activity (T50 = 185 °C, T90 = 226 °C) with a propane conversion rate of 0.29 µmol·gcat.-1·h-1 for the propane oxidation reaction, which is 4.8 times that of pristine MnOx. Meanwhile, a robust hydrothermal stability was guaranteed at 250 °C for 30 h of reaction time. The comprehensive experimental characterizations revealed that the catalytic performance improvement was closely related to the defective structures including the abundant (metal and oxygen) vacancies, distorted crystals, valence imbalance, etc., which prominently weakened the Mn-O bond and stimulated the mobility of surface lattice oxygen, leading to the elevation in the intrinsic oxidation activity. This work exemplifies the significance of defect engineering for the promotion of the oxidation ability of metal oxide, which will be valuable for the further development of efficient non-noble metal catalysts for propane oxidation.

2.
Chem Sci ; 15(23): 8966-8973, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873077

ABSTRACT

Transition metal sulfides (TMS) have gained significant attention as potential anode materials for sodium ion batteries (SIBs) due to their high theoretical capacity and abundance in nature. Nevertheless, their practical use has been impeded by challenges such as large volume changes, unstable solid electrolyte interphase (SEI), and low initial coulombic efficiency (ICE). To address these issues and achieve both long-term cycling stability and high ICE simultaneously, we present a novel approach involving surface engineering, termed as the "dual-polar confinement" strategy, combined with interface engineering to enhance the electrochemical performance of TMS. In this approach, CoS crystals are meticulously coated with polar TiO2 and embedded within a polar S-doped carbon matrix, forming a composite electrode denoted as CoS/TiO2-SC. Significantly, an ether-based electrolyte with chemical stability and optimized solvation properties synergistically interacts with the Co-S-C bonds to create a stable, ultra-thin SEI. This concerted effect results in a notably high ICE, reaching approximately 96%. Advanced characterization and theoretical simulations confirm that the uniform surface modification effectively facilitates sodium ion transport kinetics, restrains electrode pulverization, and concurrently enhances interaction with the ether-based electrolyte to establish a robust SEI. Consequently, the CoS/TiO2-SC electrode exhibits high reversible capacity, superior rate capability, and outstanding cycling stability.

3.
Int J Biol Macromol ; 265(Pt 2): 130952, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499119

ABSTRACT

The traditional textile degumming process produces abundant wastewater, which contains a lot of monosaccharides and oligosaccharides. It is of great economic and environmental significance to utilize these carbohydrates in high value. In this study, high performance liquid chromatography (HPLC) was used to analyze the carbohydrate components in kenaf degumming wastewater, and then the production of C-dots using the wastewater was explored. The results showed that the types and content in the degumming wastewater were monosaccharides (glucose, xylose and arabinose) and oligosaccharides (dextran, xylan and araban). The carbohydrate (mainly glucan and xylan) content in wastewater accounted for 91.16 % of the total carbohydrates weight loss in kenaf degumming process. By using hydrolysis and hydrothermal reaction on kenaf degumming wastewater, blue-green carbon dots (C-dots) with good performance were prepared and successfully applied to anti-counterfeiting printing. In particular, the as-prepared C-dots prepared from kenaf degumming wastewater with urea added (WUC-dots) showed an excitation-dependent photoluminescence (PL) spectrum and quantum yield (QY) of 2.4 % in aqueous solution. The fluorescent code exhibited a clear outline, excitation-tunable color and good stability, showing a great potential for anti-counterfeiting system.


Subject(s)
Hibiscus , Quantum Dots , Wastewater , Carbon/chemistry , Xylans , Monosaccharides , Oligosaccharides , Quantum Dots/chemistry
4.
Carbohydr Polym ; 332: 121906, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431392

ABSTRACT

Conventional methods faced challenges in pretreating natural cellulose fibres due to their high energy consumption and large wastewater drainage. This research devised an efficient solid-state pretreatment method for pretreating hemp fibres using ethanolamine (ETA) assisted by microwave (MW) heating. This method produced a notable removal rate of lignin (85.4 %) with the highest cellulose content (83.0 %) at a high solid content (30 %) and low temperature (70 °C). Both FT-IR and XRD analyses indicated that the pretreatment did not alter the structure of cellulose within the hemp fibres but increased crystallinity as the CrI increased from 84 % in raw hemp fibre to 89 % in pretreated fibre. As a result, it produced hemp fibres with impressive fineness (4.6 dtex) and breaking strength (3.81 cN/dtex), meeting the requirement of textile fibre. In addition, an improvement in glucose concentration (15.6 %) was observed in enzymatic hydrolysis of the MW pretreated hemp fibres compared to the fibres pretreated without MW. Furthermore, the FT-IR and NMR data confirmed that the amination of lignin occurred even at low temperature, which contributed to the high lignin removal rate. Thus, this study presents a potentially effective energy-saving, and environmentally sustainable solid-state method for pretreating hemp fibres.


Subject(s)
Cannabis , Lignin , Ethanolamine , Microwaves , Spectroscopy, Fourier Transform Infrared , Temperature , Cellulose , Hydrolysis
5.
Int J Biol Macromol ; 257(Pt 2): 128698, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103664

ABSTRACT

In order to fabricate a novel antioxidant nanofiber facial mask, a metal cone modified in-situ electrospinning with precise deposition was employed by utilizing Enteromorpha prolifera polysaccharides (EPPs). The metal cone could control the deposition area to achieve precise fabrication of facial mask on skin. The EPPs exhibited remarkable antioxidant ability, as evidenced by the half-maximal inhibitory concentrations (IC50) of 1.44 mg/mL and 0.74 mg/mL against DPPH and HO• free radicals, respectively. The antioxidant ability of the facial mask was improved by elevating the electrospinning voltage from 15 kV to 19 kV, due to the improved release capacity of EPPs by 7.09 %. Moreover, the facial mask demonstrated robust skin adhesion and moisture-retaining properties compared with commercial facial mask, which was benefited by the in-situ electrospinning technology. Furthermore, cytotoxicity assay, animal skin irritation test, and ocular irritation test collectively affirmed the safety of the facial mask. Thus, this research introduces a novel in situ electrospinning with precise deposition method and a natural antioxidant additive for preparing facial mask.


Subject(s)
Edible Seaweeds , Nanofibers , Ulva , Animals , Antioxidants/pharmacology , Ulva/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
6.
Polymers (Basel) ; 15(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959915

ABSTRACT

The catalytic conversion of cellulose to lactic acid (LA) has garnered significant attention in recent years due to the potential of cellulose as a renewable and sustainable biomass feedstock. Here, a series of Au/W-ZnO catalysts were synthesized and employed to transform cellulose into LA. Through the optimization of reaction parameters and catalyst compositions, we achieved complete cellulose conversion with a selectivity of 54.6% toward LA over Au/W-ZnO at 245 °C for 4 h. This catalyst system also proved effective at converting cotton and kenaf fibers. Structural and chemical characterizations revealed that the synergistic effect of W, ZnO, and Au facilitated mesoporous architecture generation and the establishment of an adequate acidic environment. The catalytic process proceeded through the hydrolysis of cellulose to glucose, isomerization to fructose, and its subsequent conversion to LA, with glucose isomerization identified as the rate-limiting step. These findings provide valuable insights for developing high-performance catalytic systems to convert cellulose.

7.
Inorg Chem ; 62(33): 13419-13427, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37552876

ABSTRACT

The utilization of Cu-based catalysts in CO2 conversion into valuable chemicals is of significant interest due to their potential in mitigating greenhouse gas emissions. However, the controllable design of Cu-based catalysts and the regulation of their mechanism remain challenging. In this study, a series of efficient Cu/L catalysts were prepared for this process, and the intrinsic influencing factors on the reaction routes were systematically revealed. Various techniques revealed that Cu particles in L-supported catalysts exhibited higher dispersion and formed Cu-O(OH)-K interfacial sites. However, with increasing Cu loading, the dispersion of Cu particles and the percentage of Cu-O(OH)-K interfaces decreased. Kinetic investigations revealed that the adsorption configuration and electronic structure of Cu species codetermined the reaction pathways and resulting selectivity. Cu/L catalysts possessing Cu-O(OH)-K interfaces and small particles demonstrated the preferential formation of formate species, promoting methanol formation. However, larger Cu particles generated carboxylate intermediates, resulting in higher CO selectivity..

8.
Chem Commun (Camb) ; 59(43): 6544-6547, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37161882

ABSTRACT

Herein, a series of Ru/ZTCs samples were prepared using LaY zeolite-templated carbon as a support. Characterizations showed that the unique structure of the ZTCs and the chemical state of Ru facilitated superior HER performance compared to other carbon-supported samples. This work offers a new strategy for designing excellent electrocatalysts.

9.
Adv Sci (Weinh) ; 9(35): e2204837, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36310145

ABSTRACT

Interface engineering in electrode materials is an attractive strategy for enhancing charge storage, enabling fast kinetics, and improving cycling stability for energy storage systems. Nevertheless, the performance improvement is usually ambiguously ascribed to the "synergetic effect", the fundamental understanding toward the effect of the interface at molecular level in composite materials remains elusive. In this work, a well-defined nanoscale MoS2 /TiO2 interface is rationally designed by immobilizing TiO2 nanocrystals on MoS2 nanosheets. The role of heterostructure interface between TiO2 and MoS2 by operando synchrotron X-ray diffraction (sXRD), solid-state nuclear magnetic resonance, and density functional theory calculations is investigated. It is found that the existence of a hetero-interfacial electric field can promote charge transfer kinetics. Based on operando sXRD, it is revealed that the heterostructure follows a solid-solution reaction mechanism with small volume changes during cycling. As such, the electrode demonstrates ultrafast Na+ ions storage of 300 mAh g-1 at 10 A g-1 and excellent reversible capacity of 540 mAh g-1 at 0.2 A g-1 . This work provides significant insights into understanding of heterostructure interface at molecular level, which suggests new strategies for creating unconventional nanocomposite electrode materials for energy storage systems.

10.
Front Plant Sci ; 12: 709692, 2021.
Article in English | MEDLINE | ID: mdl-34659283

ABSTRACT

Chemically deuterated cellulose fiber was expected to provide novel applications due to its spectral, biological, and kinetic isotope effect. In this research, the performance of the chemically deuterated cotton fibers, including their mechanical property, enzymatic degradation performance, effect on bacterial treatment, and fast identification (near-infrared modeling) was investigated. The breaking tenacity of the deuterated cotton fibers was slightly lower, which might be attributed to the structural damage during the chemical deuteration. The glucose yield by enzymatic hydrolysis was less than that of the protonic cotton fibers, implying the deuterated fibers are less sensitive to enzymatic degradation. Furthermore, the deuterated fibers could promote the growth of bacteria such as Escherichia. coli, which was associated with the released low-level deuterium content. At last, the near-infrared technique combined with partial least squares regression successfully achieved a fast identification of the protiated and deuterated cotton fibers, which significantly promoted the potential application of deuterated cellulose as anticounterfeiting materials (e.g., special paper).

11.
Membranes (Basel) ; 12(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35054548

ABSTRACT

Environmentally friendly face masks with high filtration efficiency are in urgent need to fight against the COVID-19 pandemic, as well as other airborne viruses, bacteria and particulate matters. In this study, coaxial electrospinning was employed to fabricate a lithium chloride enhanced cellulose acetate/thermoplastic polyurethanes (CA/TPU-LiCl) face mask nanofiber filtration membrane, which was biodegradable and reusable. The analysis results show that the CA/TPU-LiCl membrane had an excellent filtration performance: when the filtration efficiency reached 99.8%, the pressure drop was only 52 Pa. The membrane also had an outstanding reusability. The filtration performance maintained at 98.2% after 10 test cycles, and an alcohol immersion disinfection treatment showed no effect on its filtration performance. In summary, the CA/TPU-LiCl nanofiber membrane made in this work is a promising biodegradable and reusable filtration material with a wide range of potential applications, including high-performance face mask.

12.
Polymers (Basel) ; 12(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331357

ABSTRACT

The pyrolysis behavior of corn stover and polypropylene during co-pyrolysis was studied using a tube furnace reactor. The effects of mixing ratio of corn stover and polypropylene, pyrolysis temperature, addition amount of catalyst (HZSM-5) and reaction atmosphere (N2 and CO2) on the properties of pyrolysis products were studied. The results showed that co-pyrolysis of corn stover and polypropylene can increase the yield of pyrolysis oil. When corn stover:polypropylene = 1:3, the yield of pyrolysis oil was as high as 52.1%, which was 4.5% higher than the theoretical value. With the increase of pyrolysis temperature, the yield of pyrolysis oil increased first and then decreased, and reached the optimal yield at 550 °C. The addition of catalyst (HZSM-5) reduced the proportion of oxygenates and promoted the generation of aromatic hydrocarbons. CO2 has a certain oxidation effect on the components of pyrolysis oil, which promoted the increase of oxygen-containing aromatics and the reduction of deoxy-aromatic hydrocarbons. This study identified the theoretical basis for the comprehensive utilization of plastic and biomass energy.

13.
Polymers (Basel) ; 12(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210059

ABSTRACT

The pyrolysis of poly (ethylene terephthalate) (PET) in the presence of ZSM-5 zeolite and NiCl2 as a catalyst was studied at different temperatures under N2 atmosphere. Quantitative 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) were applied to characterize the waxy and solid residue. The carboxyl and aliphatic hydroxyl groups in the waxy residue have been greatly depleted after the use of zeolite during pyrolysis on the basis of the results of 13C NMR and FT-IR analysis. The proportion of aromatic hydroxyl groups increased by 21.82% when the mass ratio of zeolite to PET was set to 2.0/1.0. The results indicate that ZSM-5 is able to facilitate the decomposition of carboxyl, aliphatic groups, and ether bonds in the primary products produced from the pyrolysis of PET. In addition, the deoxygenation effects on the waxy products have been significantly enhanced with the addition of zeolite based on the results of NMR.

14.
RSC Adv ; 10(43): 25918-25928, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-35518585

ABSTRACT

Bio-oil is a valuable liquid product obtained from pyrolysis of biomass and it contains tens of hundreds of compounds, which brings about difficulties for characterization with various analytical methods. 13C NMR has advantages over other detection methods as it can characterize the entire composition of bio-oil and distinguish different types of carbon. But various shortcomings limit the application of 13C NMR. This study was carried out to develop a quantitative 13C NMR method to determine different functional groups in pyrolysis bio-oils with short NMR time and good accuracy, and propose a simulation of C, H, and O content for pyrolysis oils based on 13C NMR analysis. In order to solve long-term NMR problems, relax reagent has been added and the results show that it is an effective way to shorten the NMR time. Moreover, the aging problem is not obvious in the short-term NMR test, so the effect of aging on the test results can be neglected. Three types of substances with different oxygen content have been employed to verify the feasibility of the C, H, and O calculation methods and the result errors of all elements are small, which shows it is reliable for the simulation data of C, H and O content.

15.
Polymers (Basel) ; 11(11)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671861

ABSTRACT

In this paper, the crystalline modification of isotactic polypropylene (PP) with a rare earth ß nucleating agent (WBG) with different ultrasound conditions was investigated by scanning electron microscopy (SEM), wide-angle X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The relationship between the ultrasound conditions and the crystalline structure, as well as the mechanism for the behavior, were revealed. SEM showed that the dispersion of the nucleating agent in the PP matrix was better at shorter ultrasound distances. In addition, the higher the water cooling temperature, the better the nucleating agent was dispersed in the PP matrix. The results of XRD and DSC showed that the crystallinity and the relative content of the ß-crystal were increased with nearer ultrasound distance, as well as increased in higher water cooling temperatures. In particular, under the same conditions, the crystallinity and the relative content of the ß-crystal after ultrasonic treatment were much higher than those without ultrasound.

16.
Nat Protoc ; 14(9): 2627-2647, 2019 09.
Article in English | MEDLINE | ID: mdl-31391578

ABSTRACT

The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min).


Subject(s)
Lignin/analysis , Lignin/chemistry , Magnetic Resonance Spectroscopy/methods , Panicum/chemistry , Phosphorus/chemistry , Pinus/chemistry , Populus/chemistry , Tannins/analysis , Tannins/chemistry
17.
Polymers (Basel) ; 11(9)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31450759

ABSTRACT

Pyrolysis of raw pine bark, pine, and Douglas-Fir bark was examined. The pyrolysis oil yields of raw pine bark, pine, and Douglas-Fir bark at 500 °C were 29.18%, 26.67%, and 26.65%, respectively. Both energy densification ratios (1.32-1.56) and energy yields (48.40-54.31%) of char are higher than pyrolysis oils (energy densification ratios: 1.13-1.19, energy yields: 30.16-34.42%). The pyrolysis oils have higher heating values (~25 MJ/kg) than bio-oils (~20 MJ/kg) from wood and agricultural residues, and the higher heating values of char (~31 MJ/kg) are comparable to that of many commercial coals. The elemental analysis indicated that the lower O/C value and higher H/C value represent a more valuable source of energy for pyrolysis oils than biomass. The nuclear magnetic resonance results demonstrated that the most abundant hydroxyl groups of pyrolysis oil are aliphatic OH groups, catechol, guaiacol, and p-hydroxy-phenyl OH groups. The aliphatic OH groups are mainly derived from the cleavage of cellulose glycosidic bonds, while the catechol, guaiacol, and p-hydroxy-phenyl OH groups are mostly attributed to the cleavage of the lignin ß-O-4 bond. Significant amount of aromatic carbon (~40%) in pyrolysis oils is obtained from tannin and lignin components and the aromatic C-O bonds may be formed by a radical reaction between the aromatic and aliphatic hydroxyl groups. In this study, a comprehensive analytical method was developed to fully understand and evaluate the pyrolysis products produced from softwood barks, which could offer valuable information on the pyrolysis mechanism of biomass and promote better utilization of pyrolysis products.

18.
Polymers (Basel) ; 11(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434260

ABSTRACT

Abundant studies have been completed about factors on the pyrolysis of coal and biomass. However, few articles laid emphasis on using CO2 as a carrier gas to explore the compositional changes of pyrolysis products in coal and biomass pyrolysis for industrial application and commercial value. The experiments on coal and biomass pyrolysis in N2 and CO2 using a horizontal tube furnace were conducted at 500 °C. The impact of introducing CO2 on the pyrolysis process of bituminous coal and Platanus sawdust was investigated. The nuclear magnetic resonance (NMR) spectra of tar and the characterizations of char including Brunner-Emmet-Teller (BET) measurements, scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, and element analysis were studied. The findings in light of the experimental results show that introducing CO2 enhances the coal and biomass pyrolysis in a solid product by promoting the fracture of hydroxyl groups. It also promotes tar decomposition and the release of volatiles, which contribute to the occurrence of char with high porosity, pore volume, and specific surface. Furthermore, higher specific surface enhances the adsorption performance of char as active carbon. Simultaneously, CO2 promotes the increase of oxygen-containing aromatics especially the methoxy-containing aromatics, and the decrease of deoxygenated aromatic hydrocarbons in pyrolysis oils. In addition, the introduction of CO2 changes the amount of aliphatic compounds in various ways for the pyrolysis of coal and biomass. From a perspective of business, the changes in the composition of pyrolysis oil brought by CO2 may create new value for fuel utilization and industrial products.

19.
Polymers (Basel) ; 11(5)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109157

ABSTRACT

Artemisia vulgaris is an economic plant that is spreading widely in central China. Its unused bast generates a large amount of biomass waste annually. Utilizing the fibers in Artemisia vulgaris bast may provide a new solution to this problem. This research attempts to strengthen the understanding of Artemisia vulgaris by analyzing its fiber compositions and preparing micro- and nano-cellulose fibers, which can be used as raw materials for composites. In this work, Artemisia vulgaris bast powder (AP) and microcellulose and nanocellulose fibers (AMFs and ANFs) were produced and characterized by optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG), and bacteriostatic test. The results indicated that cellulose, hemicellulose, and lignin were the main components in the Artemisia vulgaris bast. The cellulose content reached 40.9%. The Artemisia vulgaris single fibers were microcellulose fibers with an average length of 850.6 µm and a diameter of 14.4 µm. Moreover, the AMF had considerable antibacterial ability with an antibacterial ratio of 36.6%. The ANF showed a length range of 250-300 nm and a diameter of 10-20 nm, and it had a higher crystallinity (76%) and a lower thermal stability (initial degradation temperature of 183 °C) compared with raw ANF (233 °C). This study provides fundamental information on Artemisia vulgaris bast cellulose for its subsequent utilization.

20.
Polymers (Basel) ; 11(2)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30960309

ABSTRACT

The pyrolytic behavior of several biomass components including cellulose, hemicellulose, lignin, and tannin, from two sources of waste biomass (i.e., pine bark and pine residues) were examined. Compared to the two aromatic-based components in the biomass, carbohydrates produced much less char but more gas. Surprisingly, tannin produced a significant amount of water-soluble products; further analysis indicated that tannin could produce a large amount of catechols. The first reported NMR chemical shift databases for tannin and hemicellulose pyrolysis oils were created to facilitate the HSQC analysis. Various C⁻H functional groups (>30 different C⁻H bonds) in the pyrolysis oils could be analyzed by employing HSQC-NMR. The results indicated that most of the aromatic C⁻H and aliphatic C⁻H bonds in the pyrolysis oils produced from pine bark and pine residues resulted from the lignin and tannin components. A preliminary study for a quantitative application of HSQC-NMR on the characterization of pyrolysis oil was also done in this study. Nevertheless, the concepts established in this work open up new methods to fully characterize the whole portion of pyrolysis oils produced from various biomass components, which can provide valuable information on the thermochemical mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...