Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Epidemics ; 47: 100758, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38574441

ABSTRACT

In temperate regions, annual preparation by public health officials for seasonal influenza requires early-season long-term projections. These projections are different from short-term (e.g., 1-4 weeks ahead) forecasts that are typically updated weekly. Whereas short-term forecasts estimate what "will" likely happen in the near term, the goal of scenario projections is to guide long-term decision-making using "what if" scenarios. We developed a mechanistic metapopulation model and used it to provide long-term influenza projections to the Flu Scenario Modeling Hub. The scenarios differed in their assumptions about influenza vaccine effectiveness and prior immunity. The parameters of the model were inferred from early season hospitalization data and then simulated forward in time until June 3, 2023. We submitted two rounds of projections (mid-November and early December), with the second round being a repeat of the first with three more weeks of data (and consequently different model parameters). In this study, we describe the model, its calibration, and projections targets. The scenario projection outcomes for two rounds are compared with each other at state and national level reported daily hospitalizations. We show that although Rounds 2 and 3 were identical in definition, the addition of three weeks of data produced an improvement to model fits. These changes resulted in earlier projections for peak incidence, lower projections for peak magnitude and relatively small changes to cumulative projections. In both rounds, all four scenarios presented conceivable outcomes, with some scenarios agreeing well with observations. We discuss how to interpret this agreement, emphasizing that this does not imply that one scenario or another provides the ground truth. Our model's performance suggests that its underlying assumptions provided plausible bounds for what could happen during an influenza season following two seasons of low circulation. We suggest that such projections would provide actionable estimates for public health officials.

2.
Mil Med ; 188(1-2): 311-315, 2023 01 04.
Article in English | MEDLINE | ID: mdl-34632512

ABSTRACT

INTRODUCTION: The CoronaVirus Disease 2019 (COVID-19) pandemic remains a formidable threat to populations around the world. The U.S. Military, in particular, represents a unique and distinguishable subset of the population, primarily due to the age and gender of active duty personnel. Current investigations have focused on health outcome forecasts for civilian populations, making them of limited value for military planning. MATERIALS AND METHODS: We have developed and applied an age-structured susceptible, exposed, infectious, recovered, or dead compartmental model for both civilian and military populations, driven by estimates of the time-dependent reproduction number, R(t), which can be both fit to available data and also forecast future cases, intensive care unit (ICU) patients, and deaths. RESULTS: We show that the expected health outcomes for active duty military populations are substantially different than for civilian populations of the same size. Specifically, while the number of cases is not expected to differ dramatically, severity, both in terms of ICU burdens and deaths, is substantially lower. CONCLUSIONS: Our results confirm that the burden placed on military health centers will be substantially lower than that for equivalent-sized civilian populations. More practically, the tool we have developed to investigate this (https://q.predsci.com/covid19/) can be used by military health planners to estimate the resources needed in particular locations based on current estimates of the transmission profiles of COVID-19 within the surrounding civilian population in which the military installation is embedded. As this tool continues to be developed, it can be used to assess the likely impact of different intervention strategies, as well as vaccine policies; both for the current pandemic as well as future ones.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19/epidemiology
3.
PLoS Comput Biol ; 18(8): e1010375, 2022 08.
Article in English | MEDLINE | ID: mdl-35969627

ABSTRACT

To define appropriate planning scenarios for future pandemics of respiratory pathogens, it is important to understand the initial transmission dynamics of COVID-19 during 2020. Here, we fit an age-stratified compartmental model with a flexible underlying transmission term to daily COVID-19 death data from states in the contiguous U.S. and to national and sub-national data from around the world. The daily death data of the first months of the COVID-19 pandemic was qualitatively categorized into one of four main profile types: "spring single-peak", "summer single-peak", "spring/summer two-peak" and "broad with shoulder". We estimated a reproduction number R as a function of calendar time tc and as a function of time since the first death reported in that population (local pandemic time, tp). Contrary to the diversity of categories and range of magnitudes in death incidence profiles, the R(tp) profiles were much more homogeneous. We found that in both the contiguous U.S. and globally, the initial value of both R(tc) and R(tp) was substantial: at or above two. However, during the early months, pandemic time R(tp) decreased exponentially to a value that hovered around one. This decrease was accompanied by a reduction in the variance of R(tp). For calendar time R(tc), the decrease in magnitude was slower and non-exponential, with a smaller reduction in variance. Intriguingly, similar trends of exponential decrease and reduced variance were not observed in raw death data. Our findings suggest that the combination of specific government responses and spontaneous changes in behaviour ensured that transmissibility dropped, rather than remaining constant, during the initial phases of a pandemic. Future pandemic planning scenarios should include models that assume similar decreases in transmissibility, which lead to longer epidemics with lower peaks when compared with models based on constant transmissibility.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Forecasting , Government , Humans , Seasons
4.
PLoS One ; 17(4): e0266330, 2022.
Article in English | MEDLINE | ID: mdl-35446873

ABSTRACT

More than a year since the appearance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), many questions about the disease COVID-19 have been answered; however, many more remain poorly understood. Although the situation continues to evolve, it is crucial to understand what factors may be driving transmission through different populations, both for potential future waves, as well as the implications for future pandemics. In this report, we compiled a database of more than 28 potentially explanatory variables for each of the 50 U.S. states through early May 2020. Using a combination of traditional statistical and modern machine learning approaches, we identified those variables that were the most statistically significant, and, those that were the most important. These variables were chosen to be fiduciaries of a range of possible drivers for COVID-19 deaths in the USA. We found that population-weighted population density (PWPD), some "stay at home" metrics, monthly temperature and precipitation, race/ethnicity, and chronic low-respiratory death rate, were all statistically significant. Of these, PWPD and mobility metrics dominated. This suggests that the biggest impact on COVID-19 deaths was, at least initially, a function of where you lived, and not what you did. However, clearly, increasing social distancing has the net effect of (at least temporarily) reducing the effective PWPD. Our results strongly support the idea that the loosening of "lock-down" orders should be tailored to the local PWPD. In contrast to these variables, while still statistically significant, race/ethnicity, health, and climate effects could only account for a few percent of the variability in deaths. Where associations were anticipated but were not found, we discuss how limitations in the parameters chosen may mask a contribution that might otherwise be present.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Pandemics , Physical Distancing , Population Density , SARS-CoV-2 , United States/epidemiology
5.
PLoS Comput Biol ; 17(7): e1009230, 2021 07.
Article in English | MEDLINE | ID: mdl-34324487

ABSTRACT

Influenza incidence forecasting is used to facilitate better health system planning and could potentially be used to allow at-risk individuals to modify their behavior during a severe seasonal influenza epidemic or a novel respiratory pandemic. For example, the US Centers for Disease Control and Prevention (CDC) runs an annual competition to forecast influenza-like illness (ILI) at the regional and national levels in the US, based on a standard discretized incidence scale. Here, we use a suite of forecasting models to analyze type-specific incidence at the smaller spatial scale of clusters of nearby counties. We used data from point-of-care (POC) diagnostic machines over three seasons, in 10 clusters, capturing: 57 counties; 1,061,891 total specimens; and 173,909 specimens positive for Influenza A. Total specimens were closely correlated with comparable CDC ILI data. Mechanistic models were substantially more accurate when forecasting influenza A positive POC data than total specimen POC data, especially at longer lead times. Also, models that fit subpopulations of the cluster (individual counties) separately were better able to forecast clusters than were models that directly fit to aggregated cluster data. Public health authorities may wish to consider developing forecasting pipelines for type-specific POC data in addition to ILI data. Simple mechanistic models will likely improve forecast accuracy when applied at small spatial scales to pathogen-specific data before being scaled to larger geographical units and broader syndromic data. Highly local forecasts may enable new public health messaging to encourage at-risk individuals to temporarily reduce their social mixing during seasonal peaks and guide public health intervention policy during potentially severe novel influenza pandemics.


Subject(s)
Forecasting/methods , Influenza, Human/epidemiology , Centers for Disease Control and Prevention, U.S. , Computational Biology , Epidemiological Monitoring , Geography , Humans , Incidence , Influenza, Human/diagnosis , Models, Statistical , Point-of-Care Testing/statistics & numerical data , Public Health , Seasons , Software , Time Factors , United States/epidemiology
6.
PLoS Comput Biol ; 15(5): e1007013, 2019 05.
Article in English | MEDLINE | ID: mdl-31120881

ABSTRACT

Health planners use forecasts of key metrics associated with influenza-like illness (ILI); near-term weekly incidence, week of season onset, week of peak, and intensity of peak. Here, we describe our participation in a weekly prospective ILI forecasting challenge for the United States for the 2016-17 season and subsequent evaluation of our performance. We implemented a metapopulation model framework with 32 model variants. Variants differed from each other in their assumptions about: the force-of-infection (FOI); use of uninformative priors; the use of discounted historical data for not-yet-observed time points; and the treatment of regions as either independent or coupled. Individual model variants were chosen subjectively as the basis for our weekly forecasts; however, a subset of coupled models were only available part way through the season. Most frequently, during the 2016-17 season, we chose; FOI variants with both school vacations and humidity terms; uninformative priors; the inclusion of discounted historical data for not-yet-observed time points; and coupled regions (when available). Our near-term weekly forecasts substantially over-estimated incidence early in the season when coupled models were not available. However, our forecast accuracy improved in absolute terms and relative to other teams once coupled solutions were available. In retrospective analysis, we found that the 2016-17 season was not typical: on average, coupled models performed better when fit without historically augmented data. Also, we tested a simple ensemble model for the 2016-17 season and found that it underperformed our subjective choice for all forecast targets. In this study, we were able to improve accuracy during a prospective forecasting exercise by coupling dynamics between regions. Although reduction of forecast subjectivity should be a long-term goal, some degree of human intervention is likely to improve forecast accuracy in the medium-term in parallel with the systematic consideration of more sophisticated ensemble approaches.


Subject(s)
Epidemics , Forecasting/methods , Influenza, Human/epidemiology , Centers for Disease Control and Prevention, U.S. , Computational Biology , Epidemics/statistics & numerical data , Humans , Humidity , Markov Chains , Models, Biological , Models, Statistical , Monte Carlo Method , Prospective Studies , Retrospective Studies , Seasons , United States/epidemiology
7.
Sci Rep ; 9(1): 683, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679458

ABSTRACT

Since 2013, the Centers for Disease Control and Prevention (CDC) has hosted an annual influenza season forecasting challenge. The 2015-2016 challenge consisted of weekly probabilistic forecasts of multiple targets, including fourteen models submitted by eleven teams. Forecast skill was evaluated using a modified logarithmic score. We averaged submitted forecasts into a mean ensemble model and compared them against predictions based on historical trends. Forecast skill was highest for seasonal peak intensity and short-term forecasts, while forecast skill for timing of season onset and peak week was generally low. Higher forecast skill was associated with team participation in previous influenza forecasting challenges and utilization of ensemble forecasting techniques. The mean ensemble consistently performed well and outperformed historical trend predictions. CDC and contributing teams will continue to advance influenza forecasting and work to improve the accuracy and reliability of forecasts to facilitate increased incorporation into public health response efforts.


Subject(s)
Influenza, Human/epidemiology , Models, Statistical , Centers for Disease Control and Prevention, U.S. , Disease Outbreaks , Humans , Influenza, Human/mortality , Morbidity , Seasons , United States/epidemiology
8.
J Phys Chem B ; 120(33): 8321-37, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27232159

ABSTRACT

Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.


Subject(s)
Models, Molecular , Computer Simulation , Models, Chemical , Quantum Theory
9.
PLoS Comput Biol ; 11(9): e1004392, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26402446

ABSTRACT

The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133-0.150 and R0, 1.09-2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics.


Subject(s)
Computational Biology/methods , Databases, Factual , Influenza, Human , Models, Biological , Pandemics , Humans , Influenza, Human/epidemiology , Influenza, Human/transmission , Pandemics/prevention & control , Pandemics/statistics & numerical data
10.
PLoS Comput Biol ; 9(5): e1003064, 2013.
Article in English | MEDLINE | ID: mdl-23696723

ABSTRACT

Rapidly characterizing the amplitude and variability in transmissibility of novel human influenza strains as they emerge is a key public health priority. However, comparison of early estimates of the basic reproduction number during the 2009 pandemic were challenging because of inconsistent data sources and methods. Here, we define and analyze influenza-like-illness (ILI) case data from 2009-2010 for the 50 largest spatially distinct US military installations (military population defined by zip code, MPZ). We used publicly available data from non-military sources to show that patterns of ILI incidence in many of these MPZs closely followed the pattern of their enclosing civilian population. After characterizing the broad patterns of incidence (e.g. single-peak, double-peak), we defined a parsimonious SIR-like model with two possible values for intrinsic transmissibility across three epochs. We fitted the parameters of this model to data from all 50 MPZs, finding them to be reasonably well clustered with a median (mean) value of 1.39 (1.57) and standard deviation of 0.41. An increasing temporal trend in transmissibility ([Formula: see text], p-value: 0.013) during the period of our study was robust to the removal of high transmissibility outliers and to the removal of the smaller 20 MPZs. Our results demonstrate the utility of rapidly available - and consistent - data from multiple populations.


Subject(s)
Influenza, Human , Military Personnel/statistics & numerical data , Models, Biological , Models, Statistical , Pandemics , Computational Biology/methods , Humans , Incidence , Influenza, Human/epidemiology , Influenza, Human/transmission , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...