Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Dev Cell ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851191

ABSTRACT

Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding.

3.
Cell ; 184(24): 5902-5915.e17, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34752731

ABSTRACT

Increasing evidence indicates that the brain regulates peripheral immunity, yet whether and how the brain represents the state of the immune system remains unclear. Here, we show that the brain's insular cortex (InsCtx) stores immune-related information. Using activity-dependent cell labeling in mice (FosTRAP), we captured neuronal ensembles in the InsCtx that were active under two different inflammatory conditions (dextran sulfate sodium [DSS]-induced colitis and zymosan-induced peritonitis). Chemogenetic reactivation of these neuronal ensembles was sufficient to broadly retrieve the inflammatory state under which these neurons were captured. Thus, we show that the brain can store and retrieve specific immune responses, extending the classical concept of immunological memory to neuronal representations of inflammatory information.


Subject(s)
Immunity , Insular Cortex/physiology , Neurons/physiology , Animals , Colitis/chemically induced , Colitis/complications , Colitis/immunology , Colon/pathology , Dextran Sulfate , Female , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Peritoneum/pathology , Peritonitis/complications , Peritonitis/immunology , Peritonitis/pathology , Synapses/metabolism , Zymosan
4.
Immunity ; 54(5): 1022-1036.e8, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33932356

ABSTRACT

The sympathetic nervous system is composed of an endocrine arm, regulating blood adrenaline and noradrenaline, and a local arm, a network of fibers innervating immune organs. Here, we investigated the impact of the local arm of the SNS in an inflammatory response in the colon. Intra-rectal insertion of an optogenetic probe in mice engineered to express channelrhodopsin-2 in tyrosine hydroxylase cells activated colonic sympathetic fibers. In contrast to systemic application of noradrenaline, local activation of sympathetic fibers attenuated experimental colitis and reduced immune cell abundance. Gene expression profiling showed decreased endothelial expression of the adhesion molecule MAdCAM-1 upon optogenetic stimulation; this decrease was sensitive to adrenergic blockers and 6-hydroxydopamine. Antibody blockade of MAdCAM-1 abrogated the optogenetic effect on immune cell extravasation into the colon and the pathology. Thus, sympathetic fibers control colonic inflammation by regulating immune cell extravasation from circulation, a mechanism likely relevant in multiple organs.


Subject(s)
Colitis/immunology , Colon/immunology , Colon/innervation , Organogenesis/immunology , Sympathetic Nervous System/immunology , Animals , Intercellular Adhesion Molecule-1/immunology , Mice , Mice, Inbred C57BL , Optogenetics/methods
5.
Nat Rev Immunol ; 21(1): 20-36, 2021 01.
Article in English | MEDLINE | ID: mdl-32811994

ABSTRACT

Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.


Subject(s)
Brain/metabolism , Immune System/physiology , Neuroimmunomodulation/physiology , Brain/immunology , Humans
6.
Nat Commun ; 9(1): 2723, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30006573

ABSTRACT

Regulating immunity is a leading target for cancer therapy. Here, we show that the anti-tumor immune response can be modulated by the brain's reward system, a key circuitry in emotional processes. Activation of the reward system in tumor-bearing mice (Lewis lung carcinoma (LLC) and B16 melanoma) using chemogenetics (DREADDs), resulted in reduced tumor weight. This effect was mediated via the sympathetic nervous system (SNS), manifested by an attenuated noradrenergic input to a major immunological site, the bone marrow. Myeloid derived suppressor cells (MDSCs), which develop in the bone marrow, became less immunosuppressive following reward system activation. By depleting or adoptively transferring the MDSCs, we demonstrated that these cells are both necessary and sufficient to mediate reward system effects on tumor growth. Given the central role of the reward system in positive emotions, these findings introduce a physiological mechanism whereby the patient's psychological state can impact anti-tumor immunity and cancer progression.


Subject(s)
Carcinoma, Lewis Lung/drug therapy , Clozapine/analogs & derivatives , Immunologic Factors/pharmacology , Melanoma, Experimental/drug therapy , Myeloid-Derived Suppressor Cells/drug effects , Reward , Ventral Tegmental Area/drug effects , Adrenergic Neurons/drug effects , Adrenergic Neurons/immunology , Adrenergic Neurons/pathology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Clozapine/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/immunology , Dopaminergic Neurons/pathology , Immunity, Innate/drug effects , Injections, Intraventricular , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Norepinephrine/metabolism , Stereotaxic Techniques , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/immunology , Sympathetic Nervous System/pathology , Tumor Burden/drug effects , Ventral Tegmental Area/immunology , Ventral Tegmental Area/pathology
7.
Nat Neurosci ; 20(9): 1300-1309, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28758994

ABSTRACT

The brain and its borders create a highly dynamic microenvironment populated with immune cells. Yet characterization of immune cells within the naive brain compartment remains limited. In this study, we used CyTOF mass cytometry to characterize the immune populations of the naive mouse brain using 44 cell surface markers. By comparing immune cell composition and cell profiles between the brain compartment and blood, we were able to characterize previously undescribed cell subsets of CD8 T cells, B cells, NK cells and dendritic cells in the naive brain. Using flow cytometry, we show differential distributions of immune populations between meninges, choroid plexus and parenchyma. We demonstrate the phenotypic ranges of resident myeloid cells and identify CD44 as a marker for infiltrating immune populations. This study provides an approach for a system-wide view of immune populations in the brain and is expected to serve as a resource for understanding brain immunity.


Subject(s)
Brain/cytology , Brain/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , Hyaluronan Receptors/immunology , Animals , Dendritic Cells/immunology , Male , Mice , Mice, Inbred C57BL
8.
Nat Med ; 22(8): 940-4, 2016 08.
Article in English | MEDLINE | ID: mdl-27376577

ABSTRACT

Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection.


Subject(s)
Adaptive Immunity/immunology , Dopaminergic Neurons/immunology , Hypersensitivity, Delayed/immunology , Immunity, Innate/immunology , Placebo Effect , Reward , Sympathetic Nervous System/immunology , Ventral Tegmental Area/immunology , Animals , Antibodies, Bacterial/immunology , Bacteria , Cytokines/immunology , Disease Models, Animal , Escherichia coli/immunology , Flow Cytometry , Immunohistochemistry , Macrophages/immunology , Mice , Monocytes/immunology , Phagocytosis/immunology , Sympathectomy, Chemical , T-Lymphocytes/immunology
9.
J Neurochem ; 104(1): 38-49, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18004998

ABSTRACT

A major objective in identifying the mechanisms underlying neurobehavioral teratogenicity in an animal model is the possibility of designing therapies that reverse or offset teratogen-induced neural damage. In our previous studies, we identified deficits in hippocampal muscarinic cholinergic receptor-induced translocation of protein kinase C (PKC) gamma as the likely central factor responsible for the adverse behavioral effects of pre-natal heroin exposure. Neural progenitors (NP) have the ability to recover behavioral deficits after focal hippocampal damage. Therefore, we explored whether behavioral and synaptic defects could be reversed in adulthood by neural progenitor grafting. Pregnant mice were injected daily with 10 mg/kg of heroin on gestational days 9-18. In adulthood, offspring showed deficits in the Morris maze, a behavior dependent on the integrity of septohippocampal cholinergic synaptic function, along with the loss of the PKCgamma and PKCbetaII responses to cholinergic stimulation. Mice that were exposed pre-natally to heroin and vehicle control mice were then grafted in adulthood with NP. Importantly, most grafted cells differentiated to astrocytes. NP reversed the behavioral deficits (p = 0.0043) and restored the normal response of hippocampal PKCgamma and PKCbetaII (p = 0.0337 and p = 0.0265 respectively) to cholinergic receptor stimulation. The effects were specific as the PKCalpha isoform, which is unrelated to the behavioral deficits, showed almost no changes. Neural progenitor grafting thus offers an animal model for reversing neurobehavioral deficits originating in septohippocampal cholinergic defects elicited by pre-natal exposure to insults.


Subject(s)
Abnormalities, Drug-Induced/pathology , Abnormalities, Drug-Induced/surgery , Heroin/toxicity , Narcotics/toxicity , Stem Cell Transplantation/methods , Stem Cells/physiology , Abnormalities, Drug-Induced/physiopathology , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal , Cerebellum/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Female , Male , Maze Learning/physiology , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Protein Isoforms/metabolism , Protein Kinase C/metabolism
10.
Ann N Y Acad Sci ; 1074: 659-71, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17105961

ABSTRACT

Understanding the mechanism of neurobehavioral teratogenicity is the primary prerequisite for reversal of the defect. Progress in such studies can be best achieved if the investigation focuses on behaviors related to a specific brain region and innervation. Our model focused on teratogen-induced deficits in hippocampus-related eight-arm and Morris maze behaviors. Different "cholinergic" teratogens, mainly heroin, induced both pre- and postsynaptic hyperactivity in the hippocampal cholinergic innervation that terminated in desensitization of Protein Kinase C (PKC) isoforms to cholinergic receptor stimulation. Understanding this mechanism enabled its reversal with a pharmacological therapy-nicotine infusion. Studies by others provided similar findings by targeting the deficits respective to the model investigated. Consistently, destruction of the A10-septal dopaminergic pathways that downregulate the septohippocampal cholinergic innervation ameliorated maze performance. Grafting of embryonic differentiated cholinergic cells or neural progenitors similarly reversed the biochemical/molecular alterations and the resulting deficits. Reversal therapies offer a model for the understanding of neurobehavioral teratogenicity and, clinically, offer a model for potential treatment of these deficits. Whereas neural progenitor grafting appears to be the most effective treatment, pharmacological reversal with nicotine infusion seems to possess the most feasible and immediate therapy for neurobehavioral birth defects produced by various teratogens, including drugs. This is true even though the effect of pharmacological therapies is diffuse, affecting multiple areas of the brain. "Everybody is talking about the weather but nobody does anything about it." (Mark Twain).


Subject(s)
Behavior, Animal/drug effects , Heroin/toxicity , Hippocampus/drug effects , Phenobarbital/toxicity , Pregnancy, Animal , Teratogens/pharmacology , Animals , Chickens , Disease Models, Animal , Female , Hippocampus/enzymology , Mice , Pregnancy , Prenatal Exposure Delayed Effects
SELECTION OF CITATIONS
SEARCH DETAIL