Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
2.
Circ Res ; 128(3): 363-382, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33301355

ABSTRACT

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Subject(s)
Blood-Brain Barrier/metabolism , Cerebral Arteries/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Stroke/metabolism , Lysophospholipids/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Disease Models, Animal , Endothelial Cells/pathology , Female , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/physiopathology , Ischemic Attack, Transient/prevention & control , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Ischemic Stroke/prevention & control , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Neuroprotective Agents/pharmacology , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/agonists , Sphingosine-1-Phosphate Receptors/genetics , Vascular Patency
3.
Blood Adv ; 3(11): 1702-1713, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31171507

ABSTRACT

The bioactive lipid mediator sphingosine 1-phosphate (S1P) was recently assigned critical roles in platelet biology: whereas S1P1 receptor-mediated S1P gradient sensing was reported to be essential for directing proplatelet extensions from megakaryocytes (MKs) toward bone marrow sinusoids, MK sphingosine kinase 2 (Sphk2)-derived S1P was reported to further promote platelet shedding through receptor-independent intracellular actions, and platelet aggregation through S1P1 Yet clinical use of S1P pathway modulators including fingolimod has not been associated with risk of bleeding or thrombosis. We therefore revisited the role of S1P in platelet biology in mice. Surprisingly, no reduction in platelet counts was observed when the vascular S1P gradient was ablated by impairing S1P provision to plasma or S1P degradation in interstitial fluids, nor when gradient sensing was impaired by S1pr1 deletion selectively in MKs. Moreover, S1P1 expression and signaling were both undetectable in mature MKs in situ, and MK S1pr1 deletion did not affect platelet aggregation or spreading. When S1pr1 deletion was induced in hematopoietic progenitor cells, platelet counts were instead significantly elevated. Isolated global Sphk2 deficiency was associated with thrombocytopenia, but this was not replicated by MK-restricted Sphk2 deletion and was reversed by compound deletion of either Sphk1 or S1pr2, suggesting that this phenotype arises from increased S1P export and S1P2 activation secondary to redistribution of sphingosine to Sphk1. Consistent with clinical observations, we thus observe no essential role for S1P1 in facilitating platelet production or activation. Instead, S1P restricts megakaryopoiesis through S1P1, and can further suppress thrombopoiesis through S1P2 when aberrantly secreted in the hematopoietic niche.


Subject(s)
Blood Platelets/metabolism , Lysophospholipids/metabolism , Megakaryocytes/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Stem Cell Niche , Thrombopoiesis , Animals , Blood Platelets/cytology , Lysophospholipids/genetics , Megakaryocytes/cytology , Mice , Mice, Knockout , Sphingosine/genetics , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...