Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Ecology ; 104(11): e4164, 2023 11.
Article in English | MEDLINE | ID: mdl-37672284

ABSTRACT

Preference-performance theory predicts that females should select breeding sites that maximize offspring performance. Amphibians have been a model system for investigating habitat selection, yet most studies have focused on habitat selection in response to predators and conspecifics. We investigated female oviposition site selection and larval performance in eastern gray treefrogs (Hyla versicolor) among pools with and without one of two ecologically distinct heterospecific larvae, the green frog (Rana clamitans) and the American bullfrog (Rana catesbeiana). Pools without heterospecifics were used on more nights and had more eggs deposited compared to pools with heterospecifics. In a competition experiment, treefrog larval performance matched this female preference: tadpoles developed faster and grew larger in the absence of either heterospecific. Although we hypothesized that bullfrogs would more strongly affect female treefrog preference and offspring performance because of previous work demonstrating that bullfrogs had stronger negative effects on other tadpoles, both heterospecifics elicited similar responses. The effects of heterospecifics on anuran breeding site selection are understudied and not well understood, and our results demonstrate that female selection of breeding sites is an adaptive behavior for offspring in the presence of heterospecific competitors.


Subject(s)
Anura , Rana clamitans , Animals , Female , Anura/physiology , Oviposition , Ecosystem , Larva/physiology
2.
Ecol Evol ; 13(8): e10400, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37560180

ABSTRACT

Organisms that shift their phenologies in response to global warming will experience novel photic environments, as photoperiod (daylength) continues to follow the same annual cycle. How different organisms respond to novel photoperiods could result in phenological mismatches and altered interspecific interactions. We conducted an outdoor mesocosm experiment exposing green frog (Rana clamitans) larvae, gray treefrog (Hyla versicolor) larvae, phytoplankton, periphyton, and zooplankton to a three-month shift in photoperiod: an early-season photoperiod (simulating April) and a late-season photoperiod (simulating July). We manipulated photoperiod by covering and uncovering tanks with clear or light-blocking lids to mimic realistic changes in daylength. We assessed amphibian life history traits and measured phytoplankton, periphyton, and zooplankton abundances. Green frog larvae and gray treefrog metamorphs were more developed under the early-season photoperiod. Gray treefrog total length was also reduced, but photoperiod did not affect green frog total length. Although phytoplankton and periphyton abundances were not affected by photoperiod, copepod nauplii were in greater abundance under the early-season photoperiod. Overall, this simplified aquatic community did not exhibit significant changes to structure when exposed to a three-month shift in photoperiod. Temperate amphibians that breed earlier in the year may develop faster, which may have long-term costs to post-metamorphic growth and performance. Asynchronous shifts in zooplankton abundances in response to altered photoperiods could subsequently affect freshwater community structure. While photoperiod has been shown to individually affect freshwater organisms, our study using replicated outdoor wetland communities shows that the comprehensive effects of photoperiod may be less important than other cues such as temperature and precipitation.

3.
Ecology ; 103(7): e3696, 2022 07.
Article in English | MEDLINE | ID: mdl-35352342

ABSTRACT

Understanding drivers of metapopulation dynamics remains a critical challenge for ecology and conservation. In particular, the degree of synchrony in metapopulation dynamics determines how resilient a metapopulation is to a widespread disturbance. In this study, we used 21 years of egg mass count data across 64 nonpermanent freshwater ponds in Connecticut, USA to evaluate patterns of abundance and growth and to assess regional as well as local factors in shaping the population dynamics of wood frogs (Rana sylvatica = Lithobates sylvaticus). In particular, we asked whether a species known to undergo metapopulation dynamics exhibited spatial synchrony in abundances. With the exception of a single year when breeding took place during severe drought conditions, our analyses revealed no evidence of synchrony despite close proximity (mean minimum distance < 300 m) of breeding ponds across the 3213-ha study area. Instead, local, pond-scale conditions best predicted patterns of abundance and population growth rate. We found negative density dependence on population growth rate within ponds as well as evidence that larger neighboring pond populations had a negative effect on focal ponds. Beyond density, pond depth was a critical predictor; deeper ponds supported larger populations. Drought conditions and warm winters negatively affected populations. Overall, breeding ponds vary in critical ways that either support larger, more persistent populations or smaller populations that are not represented by breeding pairs in some years. The infrequency of spatial synchrony in this system is surprising and suggests greater resilience to stressors than would have been expected if dynamics were strongly synchronized. More generally, understanding the characteristics of systems that determine synchronous population dynamics will be critical to predicting which species are more or less resilient to widespread disturbances like land conversion or climate change.


Subject(s)
Climate Change , Ecology , Animals , Ecosystem , Ponds , Population Dynamics , Population Growth , Ranidae
4.
Oecologia ; 193(3): 749-759, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32654046

ABSTRACT

Climate change is creating warmer, earlier springs, which are causing the phenology of many organisms to shift. Additionally, as temperatures increase, the body size of many ectotherms is decreasing. However, phenological and body size shifts are not occurring at the same rates across species, even in species that live in close proximity or have similar life history. Differing rates of phenological and body-size shifts may affect ecological interactions. We investigated whether shifts in phenology and body size had a predictable effect on interspecific competition. We tested three hypotheses. First, priority effects would indicate early arriving organisms gain a competitive advantage. Second, larger organisms would be competitively superior. Third, similarly sized organisms would compete more strongly. We manipulated aquatic larval conditions to create variation in wood frog (Rana sylvatica) size at and date of metamorphosis. Wood frogs were placed in terrestrial enclosures with unmanipulated juvenile American toads (Anaxyrus americanus) where we tracked amphibian growth over 3 months. Consistent with the size superiority hypothesis, initially smaller wood frogs did not compete as strongly with toads. However, the results of the phenological shift were the opposite of our priority effects prediction: early arrival by frogs increased toad mass. Our results could indicate that toads would experience fewer negative effects of competition with wood frogs that metamorphose earlier and smaller under climate change. Our study highlights the challenges of predicting how climate change will affect interspecific interactions and emphasizes the need to investigate the role of shifts in both phenology and body size.


Subject(s)
Climate Change , Metamorphosis, Biological , Animals , Body Size , Bufonidae , Ranidae , Seasons
5.
Gen Comp Endocrinol ; 295: 113508, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32442544

ABSTRACT

Artificial Light At Night (ALAN) is an environmental stressor that can disrupt individual physiology and ecological interactions. Hormones such as corticosterone are often responsible for mediating an organism's response to environmental stressors. We investigated whether ALAN was associated with a corticosterone response and whether it exacerbated the effects of another common stressor, predation. We tested for consumptive, non-consumptive, and physiological effects of ALAN and predator presence (dragonfly larvae) on a widespread amphibian, the American toad (Anaxyrus americanus). We found predators had consumptive (decreased survival) and non-consumptive (decreased growth) effects on larval toads. ALAN did not affect larval toads nor did it interact with the predator treatment to increase larval toad predation. Despite the consumptive and non-consumptive effects of predators, neither predators nor ALAN affected corticosterone concentration in the larval and metamorph life-stages. In contrast to studies in other organisms, we did not find any evidence that suggested ALAN alters predator-prey interactions between dragonfly larvae and toads. However, there was an inverse relationship between corticosterone and survival that was exacerbated by exposure to ALAN when predators were absent. Additionally, larval-stage exposure to ALAN increased corticosterone concentration in juvenile toads. Our results suggest the physiological effects of ALAN may not be demonstrated until later life-stages.


Subject(s)
Bufonidae/growth & development , Corticosterone/metabolism , Light , Analysis of Variance , Animals , Larva/growth & development , Larva/radiation effects , Predatory Behavior/physiology
6.
Proc Biol Sci ; 285(1882)2018 07 04.
Article in English | MEDLINE | ID: mdl-30051829

ABSTRACT

Artificial light at night (ALAN) affects over 20% of the earth's surface and is estimated to increase 6% per year. Most studies of ALAN have focused on a single mechanism or life stage. We tested for indirect and direct ALAN effects that occurred by altering American toads' (Anaxyrus americanus) ecological interactions or by altering toad development and growth, respectively. We conducted an experiment over two life stages using outdoor mesocosms and indoor terraria. In the first phase, the presence of ALAN reduced metamorphic duration and periphyton biomass. The effects of ALAN appeared to be mediated through direct effects on toad development, and we found no evidence for indirect effects of ALAN acting through altered ecological interactions or colonization. In the second phase, post-metamorphic toad growth was reduced by 15% in the ALAN treatment. Juvenile-stage ALAN also affected toad activity: in natural light, toads retreated into leaf litter at night whereas ALAN toads did not change behaviour. Carry-over effects of ALAN were also present; juvenile toads that had been exposed to larval ALAN exhibited marginally increased activity. In this time frame and system, our experiments suggested ALAN's effects act primarily through direct effects, rather than indirect effects, and can persist across life stages.


Subject(s)
Bufonidae/growth & development , Light/adverse effects , Metamorphosis, Biological/radiation effects , Animals , Body Size/radiation effects , Lighting
7.
Glob Chang Biol ; 24(1): 439-454, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28833972

ABSTRACT

Species' distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species' climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species' climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.


Subject(s)
Climate Change , Ranidae/physiology , Acclimatization , Animal Distribution , Animals , North America , Seasons , Temperature
8.
Environ Toxicol Chem ; 34(10): 2417-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26033303

ABSTRACT

Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments.


Subject(s)
Metamorphosis, Biological/drug effects , Ranidae/physiology , Sodium Chloride/pharmacology , Animals , Biomass , Food Chain , Larva/drug effects , Ponds , Ranidae/growth & development , Regression Analysis , Zooplankton/drug effects
9.
PLoS One ; 10(6): e0130383, 2015.
Article in English | MEDLINE | ID: mdl-26107644

ABSTRACT

Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits.


Subject(s)
Larva/growth & development , Metamorphosis, Biological , Rana catesbeiana/growth & development , Rana catesbeiana/immunology , Animals , Chytridiomycota/immunology , Rana catesbeiana/microbiology
11.
Glob Chang Biol ; 21(3): 1058-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25263760

ABSTRACT

One widely documented phenological response to climate change is the earlier occurrence of spring-breeding events. While such climate change-driven shifts in phenology are common, their consequences for individuals and populations have rarely been investigated. I addressed this gap in our knowledge by using a multi-year observational study of six wood frog (Rana sylvatica) populations near the southern edge of their range. I tested first if winter temperature or precipitation affected the date of breeding and female fecundity, and second if timing of breeding affected subsequent larval development rate, mass at metamorphosis, date of metamorphosis, and survival. Warmer winters were associated with earlier breeding but reduced female fecundity. Winter precipitation did not affect breeding date, but was positively associated with female fecundity. There was no association between earlier breeding and larval survival or mass at metamorphosis, but earlier breeding was associated with delayed larval development. The delay in larval development was explained through a counterintuitive correlation between breeding date and temperature during larval development. Warmer winters led to earlier breeding, which in turn was associated with cooler post-breeding temperatures that slowed larval development. The delay in larval development did not fully compensate for the earlier breeding, such that for every 2 days earlier that breeding took place, the average date of metamorphosis was 1 day earlier. Other studies have found that earlier metamorphosis is associated with increased postmetamorphic growth and survival, suggesting that earlier breeding has beneficial effects on wood frog populations.


Subject(s)
Climate Change , Metamorphosis, Biological , Ranidae/physiology , Animals , Female , Fertility , Larva/growth & development , Larva/physiology , Michigan , Ranidae/growth & development , Reproduction , Seasons
12.
PLoS One ; 9(5): e97387, 2014.
Article in English | MEDLINE | ID: mdl-24875899

ABSTRACT

Positive interspecific relationships between local abundance and extent of regional distribution are among the most ubiquitous patterns in ecology. Although multiple hypotheses have been proposed, the mechanisms underlying distribution-abundance (d-a) relationships remain poorly understood. We examined the intra- and interspecific distribution-abundance relationships for a metacommunity of 13 amphibian species sampled for 15 consecutive years. Mean density of larvae in occupied ponds was positively related to number of ponds occupied by species; employing the fraction of ponds uniquely available to each species this same relationship sharply decelerates. The latter relationship suggested that more abundant species inhabited most available habitats annually, whereas rarer species were dispersal limited. We inferred the mechanisms responsible for this pattern based on the dynamics of one species, Pseudacris triseriata, which transitioned between a rare, narrowly distributed species to a common, widely distributed species and then back again. Both transitions were presaged by marked changes in mean local densities driven by climatic effects on habitat quality. We identified threshold densities separating these population regime shifts that differed with landscape configuration. Our data suggest that these transitions were caused by strong cross-scale interactions between local resource/niche processes and larger scale metapopulation processes. The patterns we observed have relevance for understanding the mechanisms of interspecific d-a relationships and critical thresholds associated with habitat fragmentation.


Subject(s)
Biodiversity , Ecosystem , Amphibians , Animals , Female , Male , Michigan , Ponds , Population Density , Population Dynamics , Spatio-Temporal Analysis
13.
mBio ; 5(1): e00963-13, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24449752

ABSTRACT

UNLABELLED: Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content and insertion sequence patterns added additional discriminatory power. Gene content comparisons illustrated extensive and redundant antibiotic resistance gene carriage and direct evidence of gene transfer, recombination, gene loss, and mutation. Evidence of barriers to gene flow among hospital components was not found, suggesting complex mixing of strains and a large reservoir of A. baumannii strains capable of colonizing patients. IMPORTANCE: Genome sequencing was used to characterize multidrug-resistant Acinetobacter baumannii strains from one United States hospital system during a 1-year period to better understand how A. baumannii strains that cause infection are related to one another. Extensive variation in gene content was found, even among strains that were very closely related phylogenetically and epidemiologically. Several mechanisms contributed to this diversity, including transfer of mobile genetic elements, mobilization of insertion sequences, insertion sequence-mediated deletions, and genome-wide homologous recombination. Variation in gene content, however, lacked clear spatial or temporal patterns, suggesting a diverse pool of circulating strains with considerable interaction between strains and hospital locations. Widespread genetic variation among strains from the same hospital and even the same patient, particularly involving antibiotic resistance genes, reinforces the need for molecular diagnostic testing and genomic analysis to determine resistance profiles, rather than a reliance primarily on strain typing and antimicrobial resistance phenotypes for epidemiological studies.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Cross Infection/microbiology , Genetic Variation , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/isolation & purification , Cluster Analysis , Cross Infection/epidemiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Gene Flow , Genes, Bacterial , Genome, Bacterial , Genotype , Humans , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , United States/epidemiology
14.
Oecologia ; 166(3): 585-92, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21221649

ABSTRACT

Phenotype is often correlated with resource use, which suggests that as phenotypic variation in a population increases, intraspecific competition will decrease. However, few studies have experimentally tested the prediction that increased intraspecific phenotypic variation leads to reduced competitive effects (e.g., on growth rate, survival or reproductive rate). We investigated this prediction with two experiments on wood frogs (Rana sylvatica). In the first experiment, we found that a frog's size was positively correlated with the size of its preferred prey, indicating that the feeding niche of the frogs changed with size. In the second experiment, we used an experimental design in which we held the initial mass of "focal" frogs constant, but varied the initial mass of their competitors. We found a significant quadratic effect of the average mass of competitors: focal frog growth was lowest when raised with similar-sized competitors, and highest when raised with competitors that were larger or smaller. Our results demonstrate that growth rates increase (i.e., competitive intensity decreases) when individuals are less similar to other members of the population and exhibit less overlap in resource use. Thus, changes in the amount of phenotypic variation in a population may ultimately affect population-level processes, such as population growth rate and extinction risk.


Subject(s)
Food Chain , Predatory Behavior , Ranidae/growth & development , Animals , Body Size , Ecosystem , Metamorphosis, Biological , Michigan , Phenotype , Ranidae/physiology
15.
J Exp Zool B Mol Dev Evol ; 314(3): 179-81, 2010 May 15.
Article in English | MEDLINE | ID: mdl-19950330

ABSTRACT

Ballengee and Sessions (2009) claim that predatory attacks by small predators such as Sympetrum dragonfly larvae are sufficient to explain amphibian limb deformities in which the limb is partly or completely missing. This deformity type, the most common in nature, is not well explained by Ribeiroia infection which has also been nominated as a mechanism for limb deformities. We argue that the conclusions of the Ballanegee and Sessions study are not well founded. In part this is because the authors have provided no quantitative analysis of the association between limb deformities and predator densities. Our own data on frequencies of limb deformities suggest that missing hind limbs are often extremely rare even when Sympetrum and other small predators are common. While predatory attacks may contribute to observations of limb deformities, further study will be required to elucidate their role; other potential mechanisms deserve study as well. It is premature, and counterproductive, to draw any conclusions regarding the mechanisms behind the most common limb deformities recorded in natural populations.


Subject(s)
Amphibians/abnormalities , Forelimb/abnormalities , Hindlimb/abnormalities , Amphibians/microbiology , Animals , Culicidae/physiology , Predatory Behavior
16.
Am Nat ; 171(5): 553-67, 2008 May.
Article in English | MEDLINE | ID: mdl-18419566

ABSTRACT

Ecological and evolutionary processes are affected by forces acting at both local and regional scales, yet our understanding of how these scales interact has remained limited. These processes are fundamentally linked through individuals that develop as juveniles in one environment and then either remain in the natal habitat or disperse to new environments. Empirical studies in a diverse range of organisms have demonstrated that the conditions experienced in the natal habitat can have profound effects on the adult phenotype. This environmentally induced phenotypic variation can in turn affect the probability that an individual will disperse to a new environment and the ecological and evolutionary impact of that individual in the new environment. We synthesize the literature on this process and propose a framework for exploring the linkage between local developmental environment and dispersal. We then discuss the ecological and evolutionary implications of dispersal asymmetries generated by the effects of natal habitat conditions on individual phenotypes. Our review indicates that the influence of natal habitat conditions on adult phenotypes may be a highly general mechanism affecting the flow of individuals between populations. The wealth of information already gathered on how local conditions affect adult phenotype can and should be integrated into the study of dispersal as a critical force in ecology and evolution.


Subject(s)
Acclimatization/physiology , Demography , Ecosystem , Life Cycle Stages/physiology , Models, Theoretical , Phenotype , Animals
17.
Environ Sci Technol ; 41(5): 1771-6, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17396672

ABSTRACT

Environmental contaminants and disease may synergistically contribute to amphibian population declines. Sub-lethal levels of contaminants can suppress amphibian immune defenses and, thereby, may facilitate disease outbreaks. We conducted laboratory experiments on newly metamorphosed foothill yellow-legged frogs (Rana boylii) to determine whether sublethal exposure to the pesticide carbaryl would increase susceptibility to the pathogenic chytrid fungus Batrachochytrium dendrobatidis that is widely associated with amphibian declines. We examined the effect of carbaryl alone, chytrid alone, and interactions of the two on individual survival, growth, and antimicrobial skin defenses. We found no effect of chytrid, carbaryl, or their interaction on survival. However, chytrid infection reduced growth by approximately one-half. This is the first report of suppressed growth in post-metamorphic amphibians due to infection with chytrid. Rana boylii skin peptides strongly inhibited chytrid growth in vitro, which may explain why chytrid exposure did not result in significant mortality. Skin peptide defenses were significantly reduced after exposure to carbaryl suggesting that pesticides may inhibit this innate immune defense and increase susceptibility to disease.


Subject(s)
Carbaryl/toxicity , Chytridiomycota/drug effects , Insecticides/toxicity , Peptides/metabolism , Ranidae/growth & development , Skin/drug effects , Animals , Body Burden , Skin/metabolism
18.
Ecology ; 87(2): 340-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16637360

ABSTRACT

In many organisms, specific predator species induce defensive phenotypes that are qualitatively different from the phenotypes induced by other predator species. This differential induction implies that there is no optimal phenotype that works best against all predators. However, few studies have actually tested the hypothesis that each predator-induced phenotype provides the highest survival rate in encounters with the predator that induced that phenotype. In this experiment, I reared Pacific treefrog (Pseudacris regilla) larvae with chemical cues from two different predators (bluegill sunfish and predaceous diving-beetle larvae), and without predator cues. The Pacific treefrog larvae in the three treatments differed in their morphology and foraging behavior. I then exposed tadpoles from each treatment to free-foraging predaceous diving beetles and bluegill sunfish. Tadpoles survived best when exposed to the predator whose cues they were reared with, and worst when exposed to the other predator. In both predator environments, the tadpoles reared in the nonpredator control treatment had intermediate survival between the two predator-induced groups. Thus, there is no generalized "antipredator" response to these predators; rather, there was a clear trade-off in survival abilities between the predators.


Subject(s)
Anura/physiology , Predatory Behavior , Analysis of Variance , Animals , Phenotype
19.
Evolution ; 58(12): 2798-808, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15696757

ABSTRACT

Theory predicts that clades diversifying via sympatric speciation will exhibit high diversification rates. However, the expected rate of diversification in clades characterized by allopatric speciation is less clear. Previous studies have documented significantly higher speciation rates in freshwater fish clades diversifying via sympatric versus allopatric modes, leading to suggestions that the geographic pattern of speciation can be inferred solely from knowledge of the diversification rate. We tested this prediction using an example from darters, a clade of approximately 200 species of freshwater fishes endemic to eastern North America. A resolved phylogeny was generated using mitochondrial DNA gene sequences for logperches, a monophyletic group of darters composed of 10 recognized species. Divergence times among logperch species were estimated using a fossil calibrated molecular clock in centrarchid fishes, and diversification rates in logperches were estimated using several methods. Speciation events in logperches are recent, extending from 4.20 +/- 1.06 million years ago (mya) to 0.42 +/- 0.22 mya, with most speciation events occurring in the Pleistocene. Diversification rates are high in logperches, at some nodes exceeding rates reported for well-studied adaptive radiations such as Hawaiian silverswords. The geographic pattern of speciation in logperches was investigated by examining the relationship between degree of sympatry and the absolute age of the contrast, with the result that diversification in logperches appears allopatric. The very high diversification rate observed in the logperch phylogeny is more similar to freshwater fish clades thought to represent examples of sympatric speciation than to clades representing allopatric speciation. These results demonstrate that the geographic mode of speciation for a clade cannot be inferred from the diversification rate. The empirical observation of high diversification rates in logperches demonstrates that allopatric speciation can occur rapidly.


Subject(s)
Demography , Evolution, Molecular , Models, Biological , Perches/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity , United States
20.
J Exp Zool A Comp Exp Biol ; 297(2): 147-59, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12945751

ABSTRACT

The ability of an individual to escape predators is an important component of fitness. Several adaptive explanations of body shape variation in amphibians hypothesize relationships between swimming performance and morphology, but these ideas have rarely been tested. Here we investigate bivariate and multivariate relationships between natural variation in morphology and performance. We used high-speed video to examine fast-starts associated with escape responses in small tiger salamander larvae (Ambystoma tigrinum). Our results indicate that performance is influenced by interactions among aspects of morphology, physiology, and behavior. Relationships between morphometric variables and velocity could be detected with multivariate, but not bivariate statistical analyses. In particular, relationships between morphology and velocity depend on tail beat frequency (potentially a measure of effort or vigor). Relationships between morphology and acceleration were detected with bivariate analyses, but multivariate analysis suggests that acceleration performance, too, depends on interactions between morphology and tail beat frequency. We found a positive relationship between tail area and propulsive performance, which supports adaptive interpretations of variation in larval tail shape within and between amphibian species.


Subject(s)
Ambystoma/anatomy & histology , Escape Reaction , Swimming/physiology , Adaptation, Physiological , Animals , Larva/anatomy & histology , Predatory Behavior , Tail/anatomy & histology , Tail/physiology , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...