Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
2.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Article in English | MEDLINE | ID: mdl-27528516

ABSTRACT

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Subject(s)
Cerebellar Ataxia/genetics , DNA Copy Number Variations , Exome , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Adolescent , Adult , Age of Onset , Ataxia Telangiectasia Mutated Proteins/genetics , Carrier Proteins/genetics , Cerebellar Ataxia/etiology , Child , Child, Preschool , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins , Male , Membrane Glycoproteins/genetics , Niemann-Pick C1 Protein , Peroxisomal Multifunctional Protein-2/genetics , Young Adult
3.
Hum Genet ; 131(11): 1805-10, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22825317

ABSTRACT

Sarcosinemia is an autosomal recessive metabolic trait manifested by relatively high concentrations of sarcosine in blood and urine. Sarcosine is a key intermediate in 1-carbon metabolism and under normal circumstances is converted to glycine by the enzyme sarcosine dehydrogenase. We encountered six families from two different descents (French and Arab), each with at least one individual with elevated levels of sarcosine in blood and urine. Using the "candidate gene approach" we sequenced the gene encoding sarcosine dehydrogenase (SARDH), which plays an important role in the conversion of sarcosine to glycine, and found four different mutations (P287L, V71F, R723X, R514X) in three patients. In an additional patient, we found a uniparental disomy in the region of SARDH gene. In two other patients, we did not find any mutations in this gene. We have shown for the first time that mutations in the SARDH gene are associated with sarcosinemia. In addition, our results indicate that other genes are most probably involved in the pathogenesis of this condition.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Mutation/genetics , Sarcosine Dehydrogenase/genetics , DNA/blood , DNA/genetics , DNA Primers/chemistry , DNA Primers/genetics , Female , Humans , Male , Pedigree , Phenotype , Polymerase Chain Reaction , Sarcosine/blood , Sarcosine Dehydrogenase/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL