Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34503000

ABSTRACT

Several composites were prepared based on a polypropylene random copolymer (PPR) and different amounts of date stone flour (DSF). This cellulosic fiber was silanized beforehand in order to reduce its hydrophilicity and improve the interfacial adhesion with the polymer. Other composites were also obtained, including a sorbitol derivative as an effective nucleant. Films made from these composites were prepared using two different thermal treatments, involving slow crystallization and rapid cooling from the melt. Scanning electron microscopy was used to evaluate the morphological features and the DSF particle dispersion within the PPR matrix. X-ray diffraction experiments and differential scanning calorimetry tests were employed to assess the crystalline characteristics and for the phase transitions, paying especial attention to the effects of the DSF and nucleating agent on PPR crystallization. An important nucleation ability was found for DSF, and evidently for the sorbitol derivative. The peak crystallization temperature upon cooling was considerably increased by the incorporation of either the nucleant or DSF. Additionally, a much higher proportion of orthorhombic crystals developed in relation to the monoclinic ones. Moreover, the mechanical responses were estimated from the microhardness experiments and significant improvements were found with increasing DSF contents. All of these findings indicate that the use of silanized DSF is a fairly good approach for the preparation of polymeric eco-composites, taking advantage of the widespread availability of this lignocellulosic material, which is otherwise wasted.

2.
Materials (Basel) ; 14(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361495

ABSTRACT

To modulate the properties of degradable implants from outside of the human body represents a major challenge in the field of biomaterials. Polylactic acid is one of the most used polymers in biomedical applications, but it tends to lose its mechanical properties too quickly during degradation. In the present study, a way to reinforce poly-L lactic acid (PLLA) with magnetic nanoparticles (MNPs) that have the capacity to heat under radiofrequency electromagnetic fields (EMF) is proposed. As mechanical and degradation properties are related to the crystallinity of PLLA, the aim of the work was to explore the possibility of modifying the structure of the polymer through the heating of the reinforcing MNPs by EMF within the biological limit range f·H < 5·× 109 Am-1·s-1. Composites were prepared by dispersing MNPs under sonication in a solution of PLLA. The heat released by the MNPs was monitored by an infrared camera and changes in the polymer were analyzed with differential scanning calorimetry and nanoindentation techniques. The crystallinity, hardness, and elastic modulus of nanocomposites increase with EMF treatment.

3.
Polymers (Basel) ; 12(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322121

ABSTRACT

In the present work, fiber mats of poly(lactic acid), PLA, plasticized by different amounts of oligomer lactic acid, OLA, were obtained by electrospinning in order to investigate their long term hydrolytic degradation. This was performed in a simulated body fluid for up to 352 days, until the complete degradation of the samples is reached. The evolution of the plasticized electrospun mats was followed in terms of morphological, thermal, chemical and crystalline changes. Mass variation and water uptake of PLA-based electrospun mats, together with pH stability of the immersion media, were also studied during the in vitro test. The results showed that the addition of OLA increases the hydrolytic degradation rate of PLA electrospun fiber mats. Moreover, by adding different amounts of OLA, the time of degradation of the electrospun fiber mats can be modulated over the course of a year. Effectively, by increasing the amount of OLA, the diameter of the electrospun fibers decreases more rapidly during degradation. On the other hand, the degree of crystallinity and the dimension of the α crystals of the electrospun fiber mats are highly affected not only by the presence but also by the amount of OLA during the whole process.

4.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759696

ABSTRACT

In the last few decades, the development of new electrospun materials with different morphologies and advanced multifunctional properties are strongly consolidated. There are several reviews that describe the processing, use and characterization of electrospun nanocomposites, however, based on our knowledge, no review on electrospun nanocomposites reinforced with nanoparticles (NPs) based on magnesium, Mg-based NPs, are reported. Therefore, in the present review, we focus attention on the fabrication of these promising electrospun materials and their potential applications. Firstly, the electrospinning technique and its main processing window-parameters are described, as well as some post-processing methods used to obtain Mg-based materials. Then, the applications of Mg-based electrospun nanocomposites in different fields are pointed out, thus taking into account the current trend in developing inorganic-organic nanocomposites to gradually satisfy the challenges that the industry generates. Mg-based electrospun nanocomposites are becoming an attractive field of research for environmental remediation (waste-water cleaning and air filtration) as well as for novel technical textiles. However, the mayor application of Mg-based electrospun materials is in the biomedical field, as pointed out. Therefore, this review aims to clarify the tendency in using electrospinning technique and Mg-based nanoparticles to huge development at industrial level in the near future.

5.
ACS Omega ; 5(16): 9055-9063, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32363257

ABSTRACT

Additives are absolutely essential in the development of commercial polymeric materials. Accordingly, an exhaustive control of composition and evolution in these additives over time is necessary to validate their performance and safety during their shelf life and, consequently, their ultimate applications. Gas chromatography coupled with mass spectrometry, GC-MS, is described in the present work to identify and analyze the content of a wide variety of additives, commonly used in industrial polymeric materials. First, the identification under the present experimental protocol of additives with a relatively high molecular weight (Irganox 1330 and Irganox 1010) has been successfully attained. Second, the evolution under solar exposure over time has been analyzed by GC-MS for 11 additives and derived substances, which have been identified in a commercial polypropylene sample, estimating the corresponding depletion times. In addition, the resultant increase of carbonyl groups in the polymeric macrochains along the photo-oxidation has been also determined by infrared spectroscopy. Therefore, GC-MS is found to be a reliable tool for the analysis of the evolution of commonly used polymer additives under specific degradation conditions, which can be very useful in the formulation of improved future additivations.

6.
Colloids Surf B Biointerfaces ; 185: 110617, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31740326

ABSTRACT

New biocompatible and bioabsorbable materials are currently being developed for bone regeneration. These serve as scaffolding for controlled drug release and prevent bacterial infections. Films of polylactic acid (PLA) polymers that are Mg-reinforced have demonstrated they have suitable properties and bioactive behavior for promoting the osseointegration process. However little attention has been paid to studying whether the degradation process can alter the adhesive physical properties of the biodegradable film and whether this can modify the biofilm formation capacity of pathogens. Moreover, considering that the concentration of Mg and other corrosion products may not be constant during the degradation process, the question that arises is whether these changes can have negative consequences in terms of the bacterial colonization of surfaces. Bacteria are able to react differently to the same compound, depending on its concentration in the medium and can even become stronger when threatened. In this context, physical surface parameters such as hydrophobicity, surface tension and zeta potential of PLA films reinforced with 10% Mg have been determined before and after degradation, as well as the biofilm formation capacity of Staphylococcus epidermidis. The addition of Mg to the films makes them less hydrophobic and the degradation also reduces the hydrophobicity and increases the negative charge of the surface, especially over long periods of time. Early biofilm formation at 8 h is consistent with the physical properties of the films, where we can observe a reduction in the bacterial biofilm formation. However, after 24 h of incubation, the biofilm formation increases significantly on the PLA/Mg films with respect to PLA control. The explosive release of Mg ions and other corrosion products within the first hours were not enough to prevent a greater biofilm formation after this initial time. Consequently, the Mg addition to the polymer matrix had a bacteriostatic effect but not a bactericidal one. Future works should aim to optimize the design and biofunctionality of these promising bioabsorbable composites for a degradation period suitable for the intended application.


Subject(s)
Biofilms/drug effects , Magnesium/pharmacology , Microbial Viability/drug effects , Polyesters/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Optical Imaging , Static Electricity , Surface Properties , Water/chemistry
7.
Polymers (Basel) ; 11(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370184

ABSTRACT

The "comonomer effect" is an intriguing kinetic phenomenon in olefin copolymerization that still remains without a detailed explanation. It typically relates to the rate of enhancement undergone in ethylene and propene catalytic polymerization just by adding small fractions of an alpha-olefin. The difficulty lies in the fact that changes caused by the presence of the comonomer in reaction parameters are so conspicuous that it is really difficult to pin down which of them is the primary cause and which ones are side factors with marginal contribution to the phenomenon. Recent investigations point to the modification of the catalyst active sites as the main driving factor. In this work, the comonomer effect in the metallocene copolymerization of propene and 1-nonene is analysed and correlated to the comonomer role in the termination of the chain-growing process. The associated termination mechanisms involved furnish most of chain-free active sites, in which the selective interaction of the comonomer was proposed to trigger the insertion of monomers. A thorough characterisation of chain-end groups by means of the 1H NMR technique allows for detailing of specific transfer processes, ascribed to comonomer insertions, as well as evidencing the influence of the growing chain's microstructure over the different termination processes available.

8.
J Biomed Mater Res A ; 104(4): 866-78, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26662548

ABSTRACT

In this work, we investigated a new approach to incorporate Mg particles within a PDLLA matrix using a solvent-free commercially available process. PDLLA/Mg composites were manufactured by injection moulding and the effects of Mg incorporated into PDLLA on MSC and macrophage responses were evaluated. Small amounts of Mg particles (≤ 1 wt %) do not cause thermal degradation of PDLLA, which retains its mechanical properties. PDLLA/Mg composites release hydrogen, alkaline products and Mg(2+) ions without changing pH of culture media. Mg-containing materials provide a noncytotoxic environment that enhances MSC viability. Concentration of Mg(2+) ions in extracts of MSCs increases with the increment of Mg content in the composites. Incorporation of Mg particles into PDLLA stimulates FN production, ALP activity, and VEGF secretion in MSCs, an effect mediated by degradation products dissolved from the composites. Degradation products of PDLLA induce an increase in MCP-1, RANTES, and MIP-1α secretion in macrophages while products of composites have minimal effect on these chemokines. Regulation of MSC behavior at the biomaterial's interface and macrophage-mediated inflammatory response to the degradation products is related to the incorporation of Mg in the composites. These findings suggest that including small amounts of Mg particles into polymeric devices can be a valuable strategy to promote osseointegration and reduce host inflammatory response.


Subject(s)
Biocompatible Materials/metabolism , Macrophages/cytology , Magnesium/metabolism , Mesenchymal Stem Cells/cytology , Polyesters/metabolism , Alkaline Phosphatase/metabolism , Biocompatible Materials/chemistry , Cell Line , Cell Survival , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Chemokine CCL5/metabolism , Humans , Macrophages/metabolism , Magnesium/chemistry , Mesenchymal Stem Cells/metabolism , Polyesters/chemistry , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL