Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Sci Rep ; 13(1): 22332, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102180

ABSTRACT

A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Tremor/therapy , Thalamus/surgery , Movement/physiology , Treatment Outcome
2.
Cells ; 12(11)2023 05 23.
Article in English | MEDLINE | ID: mdl-37296570

ABSTRACT

High-frequency stimulation (HFS) is a promising therapy for patients with depression. However, the mechanisms underlying the HFS-induced antidepressant-like effects on susceptibility and resilience to depressive-like behaviors remain obscure. Given that dopaminergic neurotransmission has been found to be disrupted in depression, we investigated the dopamine(DA)-dependent mechanism of the antidepressant-like effects of HFS of the prelimbic cortex (HFS PrL). We performed HFS PrL in a rat model of mild chronic unpredictable stress (CUS) together with 6-hydroxydopamine lesioning in the dorsal raphe nucleus (DRN) and ventral tegmental area (VTA). Animals were assessed for anxiety, anhedonia, and behavioral despair. We also examined levels of corticosterone, hippocampal neurotransmitters, neuroplasticity-related proteins, and morphological changes in dopaminergic neurons. We found 54.3% of CUS animals exhibited decreased sucrose consumption and were designated as CUS-susceptible, while the others were designated CUS-resilient. HFS PrL in both the CUS-susceptible and CUS-resilient animals significantly increased hedonia, reduced anxiety, decreased forced swim immobility, enhanced hippocampal DA and serotonin levels, and reduced corticosterone levels when compared with the respective sham groups. The hedonic-like effects were abolished in both DRN- and VTA-lesioned groups, suggesting the effects of HFS PrL are DA-dependent. Interestingly, VTA-lesioned sham animals had increased anxiety and forced swim immobility, which was reversed by HFS PrL. The VTA-lesioned HFS PrL animals also had elevated DA levels, and reduced p-p38 MAPK and NF-κB levels when compared to VTA-lesioned sham animals. These findings suggest that HFS PrL in stressed animals leads to profound antidepressant-like responses possibly through both DA-dependent and -independent mechanisms.


Subject(s)
Corticosterone , Dopamine , Rats , Animals , Rats, Sprague-Dawley , Dopamine/metabolism , Antidepressive Agents/pharmacology , Cerebral Cortex/metabolism
3.
Mov Disord ; 36(8): 1737-1743, 2021 08.
Article in English | MEDLINE | ID: mdl-34080714

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an opportunistic pathogen that infects the upper respiratory tract in humans and causes serious illness, including fatal pneumonia and neurological disorders. Several studies have reported that SARS-CoV-2 may worsen the symptoms of Parkinson's disease (PD), with the potential to increase mortality rates in patients with advanced disease. The potential risk of SARS-CoV-2 to induce PD has also been suggested because the virus can enter the brain, where it can trigger cellular processes involved in neurodegeneration. In this review, we will discuss the potential of SARS-CoV-2 to exacerbate and cause certain neurological disorders, including PD. We will then elucidate its impact on the brain while examining its pathways and mechanisms of action. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
COVID-19 , Nervous System Diseases , Parkinson Disease , Brain , Humans , Parkinson Disease/complications , SARS-CoV-2
4.
Prog Neurobiol ; 201: 102030, 2021 06.
Article in English | MEDLINE | ID: mdl-33711402

ABSTRACT

Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.


Subject(s)
Neuralgia , Animals , Disease Models, Animal , Ion Channels , Rats, Sprague-Dawley , Sciatic Nerve
5.
Redox Biol ; 40: 101839, 2021 04.
Article in English | MEDLINE | ID: mdl-33486153

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction for which there is an unmet need for better treatment options. Although oxidative stress is a common feature of neurodegenerative diseases, notably PD, there is currently no efficient therapeutic strategy able to tackle this multi-target pathophysiological process. Based on our previous observations of the potent antioxidant and neuroprotective activity of SELENOT, a vital thioredoxin-like selenoprotein, we designed the small peptide PSELT from its redox active site to evaluate its antioxidant properties in vivo, and its potential polyfunctional activity in PD models. PSELT protects neurotoxin-treated dopaminergic neurons against oxidative stress and cell death, and their fibers against neurotoxic degeneration. PSELT is cell-permeable and acts in multiple subcellular compartments of dopaminergic neurons that are vulnerable to oxidative stress. In rodent models of PD, this protective activity prevented neurodegeneration, restored phosphorylated tyrosine hydroxylase levels, and led to improved motor skills. Transcriptomic analysis revealed that gene regulation by PSELT after MPP+ treatment negatively correlates with that occurring in PD, and positively correlates with that occurring after resveratrol treatment. Mechanistically, a major impact of PSELT is via nuclear stimulation of the transcription factor EZH2, leading to neuroprotection. Overall, these findings demonstrate the potential of PSELT as a therapeutic candidate for treatment of PD, targeting oxidative stress at multiple intracellular levels.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Antioxidants/pharmacology , Disease Models, Animal , Dopaminergic Neurons , Neuroprotective Agents/pharmacology , Oxidative Stress , Parkinson Disease/drug therapy
6.
Int J Mol Sci ; 21(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198169

ABSTRACT

Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.


Subject(s)
Dopamine Agonists/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/metabolism , Subthalamic Nucleus/drug effects , Aminopyridines/pharmacology , Animals , Apomorphine/pharmacology , Basal Ganglia/drug effects , Basal Ganglia/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Indoles/pharmacology , Male , Motor Cortex/drug effects , Motor Cortex/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/pharmacology , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Subthalamic Nucleus/metabolism
7.
Toxicol In Vitro ; 65: 104792, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32061760

ABSTRACT

The extensive application of bifenthrin (BF) insecticide in agriculture has raised serious concerns with regard to increased risks of developing neurodegenerative diseases. Recently, our group showed that BF exposure in rodent models induced oxidative stress and inflammation markers in various regions of the brain (frontal cortex, striatum and hippocampus) and this was associated with behavioral changes. This study aimed to confirm such inflammatory and oxidative stress in an in vitro cell culture model of SK-N-SH human neuroblastoma cells. Markers of oxidative stress (ROS, NO, MDA, H2O2), antioxidant enzyme activities (CAT, GPx, SOD) and inflammatory response (TNF-α, IL-6, PGE2) were analyzed in SK-N-SH cells after 24 h of exposure to different concentrations of BF (1-20 µM). Protein synthesis and mRNA expression of the enzymes implicated in the synthesis of PGE2 were also measured (COX-2, mPGES-1) as well as nuclear factor κappaB (NF-κBp65) and antioxidant nuclear erythroid-2 like factor-2 (Nrf-2). Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Exposure of SK-N-SH cells to BF resulted in a concentration-dependent reduction in the number of viable cells (reduction of MTT and increase in LDH activity). There was also a BF concentration-dependent increase in oxidative stress markers (ROS release, NO, MDA and H2O2) and decrease in the activity of antioxidant enzymes (CAT and GPx activities). There was further a concentration-dependent increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory mediator PGE2, increase in protein synthesis and mRNA expression of inflammatory markers (COX-2, mPGES-1 and NF-κBp65) and decrease in protein synthesis and mRNA expression of antioxidant Nrf-2. Our data shows that BF induces various oxidative stress and inflammatory markers in SK-N-SH human neuroblastoma cells as well as the activation of NF-κBp65 signaling pathway. This is in line with prior results in brain regions of rodents exposed in vivo to BF showing increased oxidative stress in response to BF exposure, occurring in pro-inflammatory conditions and likely activating programmed cell death.


Subject(s)
Inflammation Mediators/metabolism , Insecticides/toxicity , Oxidative Stress/drug effects , Pyrethrins/toxicity , Cell Line, Tumor , Cyclooxygenase 2/genetics , Humans , Interleukin-6/metabolism , NF-E2-Related Factor 2/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Nitric Oxide/metabolism , Prostaglandin-E Synthases/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
J Neurosci Methods ; 333: 108577, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31899208

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered as a gold standard therapy for the alleviation of motor symptoms in Parkinson's disease (PD). This success paved the way to its application for other neurological and psychiatric disorders. In this context, we aimed to develop a rodent-specific stimulator with characteristics similar to those used in patients. NEW METHOD: We designed a stimulator that can be connected to an electrode container with options for bilateral or unilateral stimulation selection and offers a wide range of frequencies, pulse widths and intensities, constant current, biphasic current-control and charge balancing. Dedicated software was developed to program these parameters and the device was tested on a bilateral 6-hydroxydopamine (6-OHDA) rat model of PD. RESULTS: The equipment was well tolerated by the animals with a good general welfare. STN stimulation (130 Hz frequency, 0.06 ms pulse width, 150 µA average intensity) improved the motor deficits induced by 6-OHDA as it significantly increased the number of movements compared to the values obtained in the same animals without STN stimulation. Furthermore, it restored motor coordination by significantly increasing the time spent on the rotarod bar. CONCLUSION: We successfully developed and validated a new portable and programmable stimulator for freely moving rats that delivers a large range of stimulation parameters using bilateral biphasic current-control and charge balancing to maximize tissue safety. This device can be used to test deep brain stimulation in different animal models of human brain diseases.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Animals , Humans , Movement , Oxidopamine/toxicity , Parkinson Disease/therapy , Rats
9.
Front Neurol ; 9: 532, 2018.
Article in English | MEDLINE | ID: mdl-30108543

ABSTRACT

Introduction: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is known as a therapy of choice of advanced Parkinson's disease. The present study aimed to assess the beneficial and side effects of STN DBS in Moroccan Parkinsonian patients. Material and Methods: Thirty five patients underwent bilateral STN DBS from 2008 to 2016 in the Rabat University Hospital. Patients were assessed preoperatively and followed up for 6 to 12 months using the Unified Parkinson's Disease Rating Scale in four conditions (stimulation OFF and ON and medication OFF and ON), the levodopa-equivalent daily dose (LEDD), dyskinesia and fluctuation scores and PDQ39 scale for quality of life (QOL). Postoperative side effects were also recorded. Results: The mean age at disease onset was 42.31 ± 7.29 years [28-58] and the mean age at surgery was 54.66 ± 8.51 years [34-70]. The median disease duration was 11.95 ± 4.28 years [5-22]. Sixty-three percentage of patients were male. 11.4% of patients were tremor dominant while 45.71 showed akinetic-rigid form and 42.90 were classified as mixed phenotype. The LEDD before surgery was 1200 mg/day [800-1500]. All patients had motor fluctuations whereas non-motor fluctuations were present in 61.80% of cases. STN DBS decreased the LEDD by 51.72%, as the mean LEDD post-surgery was 450 [188-800]. The UPDRS-III was improved by 52.27%, dyskinesia score by 66.70% and motor fluctuations by 50%, whereas QOL improved by 27.12%. Post-operative side effects were hypophonia (2 cases), infection (3 cases), and pneumocephalus (2 cases). Conclusion: Our results showed that STN DBS is an effective treatment in Moroccan Parkinsonian patients leading to a major improvement of the most disabling symptoms (dyskinesia, motor fluctuation) and a better QOL.

10.
Mov Disord ; 33(6): 1010-1015, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29774960

ABSTRACT

BACKGROUND: Pain is a major non motor symptom that contributes to impaired quality of life in PD. However, its mechanism is unknown. OBJECTIVES AND METHODS: We sought to identify the pain phenotypes and parallel changes in spinal integration of peripheral stimuli in a rat model of PD induced by lesions of SN dopamine neurons, using behavioral plantar and von Frey tests as well as electrophysiology of the dorsal horn. RESULTS: We show that dopamine depletion by 6-OHDA induced hypersensitivity to mechanical and thermal stimuli. These abnormal behaviors were paralleled by increased neuronal responses and hyperexcitability of wide dynamic range neurons of lamina V of the dorsal horn of the spinal cord in response to electrical stimulation of the sciatic nerve in the 6-OHDA model as compared to sham rats. CONCLUSIONS: These results provide evidence for alteration of nociceptive integration in the spinal dorsal horn neurons in 6-OHDA rats that can reflect changes in pain behavior. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Hyperalgesia/etiology , Hyperkinesis/chemically induced , Parkinson Disease, Secondary/complications , Parkinson Disease, Secondary/pathology , Spinal Cord/pathology , Action Potentials/physiology , Animals , Disease Models, Animal , Dopamine/metabolism , Functional Laterality , Hyperalgesia/pathology , Male , Neurons/physiology , Oxidopamine/toxicity , Pain Measurement , Pain Threshold/drug effects , Pain Threshold/physiology , Parkinson Disease, Secondary/chemically induced , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sympatholytics/toxicity
11.
Front Neurosci ; 12: 173, 2018.
Article in English | MEDLINE | ID: mdl-29615861

ABSTRACT

Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead. Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p.) or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin) and their metabolites has been determined using HPLC. Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons. Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity.

12.
Front Neurol ; 9: 170, 2018.
Article in English | MEDLINE | ID: mdl-29670566

ABSTRACT

BACKGROUND: Non-motor symptoms (NMSs) are a real burden in Parkinson's disease (PD). They may appear in early pre-symptomatic stage as well as throughout the disease course. However, their relationship with the deterioration of the patient's quality of life (QoL) is still under debate. This study aimed to investigate the prevalence of NMSs and their impact on the QoL in a cohort of Moroccan patients. METHODS: We carried out a cross-transactional study, where a total of 117 patients were submitted to a structured clinical interview and examination investigating motor and NMSs based on common and conventional scales. Motor symptoms were assessed by the UPDRS I-VI during ON condition. The NMSs were evaluated with common scales and their relationship with the QoL was investigated. RESULTS: The mean patient's age was 60.77 ± 11.36 years old, and the median disease duration was 6 years [2.5-9.5]. Motor's phenotype subtypes were the mixed form in 40.2% of patients, akinetic-rigid in 20.5% and a tremor-dominant form in 39.3%. The median Hoehn and Yahr staging was 2 [1-2.5]. Regarding NMSs, the most common were urinary dysfunctions (82.6%), sleep (80.6%), and gastrointestinal (80%) disorders. Other autonomic dysfunctions were also frequent: thermoregulatory dysfunctions 58.6%, cardiovascular troubles 50.9%, and sexual dysfunctions 47.9%. Depression was present in 47.9% and fatigue symptoms in 23.1%. The median score of SCOPA-AUT was 14 [7.75-21.80]. The median PD questionnaire 39-score index (PDQ39-SI) was 23.22% and the most affected dimension was "mobility." Univariate and multivariate analyses showed that the SCOPA-AUT score impacted the QoL (p = 0.001), especially the gastrointestinal (p = 0.007), and cardiovascular (p = 0.049) dimensions. CONCLUSION: Our data show that all patients have presented at least one NMS. Autonomic and sleep disorders were the most frequent, and in contrast to other studies, digestive and cardiovascular disorders were rather the factors influencing negatively the QoL of patients. Understanding the pathophysiology of these NMSs should be placed at the forefront in order to develop new therapeutic approaches by improving the QoL of PD patients.

13.
Neurobiol Dis ; 110: 20-28, 2018 02.
Article in English | MEDLINE | ID: mdl-29108985

ABSTRACT

Anxiety in Parkinson's disease is a comorbid non-motor symptom that alters the quality of life of patients. Its neuronal substrates and those of l-Dopa treatment are still poorly known. Using different combinations of monoaminergic system lesions in the rat, we addressed the contribution of these systems in the efficacy of l-DOPA on anxiety and on the neuronal activity of basolateral amygdala (BLA), a brain structure involved in anxiety. Anxiety, locomotor activity and motor performance were assessed using the elevated plus maze, the open field and the skinner box, respectively. The neuronal activity of BLA was electrophysiologically recorded and the loss of dopamine, noradrenaline and serotonin neurons was quantified by immunohistochemistry and stereology. Selective bilateral lesion of dopamine neurons, with or without the additional lesions of noradrenaline and/or serotonin neurons, induced anxiety disorder. l-Dopa significantly decreased anxiety in animals with bilateral lesion of dopamine neurons alone or combined with that of noradrenaline neurons. In these two groups, l-DOPA enhanced the firing rate of BLA neurons. However, in animals with combined lesions of dopamine and serotonin neurons or in animals with lesions of the three monoaminergic systems, l-Dopa was no longer able to decrease anxiety behavior or to change the electrophysiological parameters of BLA neurons. Our data provide the first evidence of the key and positive role of the serotonergic system in the combined efficacy of l-Dopa on anxiety and the paralleled BLA neuronal activity, suggesting that the enhancement of the activity of serotonin neurons may boost the anxiolytic action of l-DOPA.


Subject(s)
Antiparkinson Agents/pharmacology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Levodopa/pharmacology , Serotonergic Neurons/metabolism , Animals , Anxiety/etiology , Male , Parkinson Disease/metabolism , Parkinson Disease/psychology , Rats , Rats, Sprague-Dawley
15.
Front Behav Neurosci ; 11: 178, 2017.
Article in English | MEDLINE | ID: mdl-28970786

ABSTRACT

Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the "open field" to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances.

16.
Front Cell Neurosci ; 11: 274, 2017.
Article in English | MEDLINE | ID: mdl-28955204

ABSTRACT

The link between the anti-Parkinsonian drug L-3,4-dihydroxyphenylalanine (L-DOPA) and the serotonergic (5-HT) system has been long established and has received increased attention during the last decade. Most studies have focused on the fact that L-DOPA can be transformed into dopamine (DA) and released from 5-HT terminals, which is especially important for the management of L-DOPA-induced dyskinesia. In patients, treatment using L-DOPA also impacts 5-HT neurotransmission; however, few studies have investigated the mechanisms of this effect. The purpose of this review is to summarize the electrophysiological and neurochemical data concerning the effects of L-DOPA on 5-HT cell function. This review will argue that L-DOPA disrupts the link between the electrical activity of 5-HT neurons and 5-HT release as well as that between 5-HT release and extracellular 5-HT levels. These effects are caused by the actions of L-DOPA and DA in 5-HT neurons, which affect 5-HT neurotransmission from the biosynthesis of 5-HT to the impairment of the 5-HT transporter. The interaction between L-DOPA and 5-HT transmission is especially relevant in those Parkinson's disease (PD) patients that suffer dyskinesia, comorbid anxiety or depression, since the efficacy of antidepressants or 5-HT compounds may be affected.

17.
Brain Struct Funct ; 222(6): 2473-2485, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28013397

ABSTRACT

The subthalamic nucleus (STN) receives monosynaptic glutamatergic afferents from different areas of the cortex, known as the "hyperdirect" pathway. The STN has been divided into three distinct subdivisions, motor, limbic, and associative parts in line with the concept of parallel information processing. The extent to which the parallel information processing coming from distinct cortical areas overlaps in the different territories of the STN is still a matter of debate and the proposed role of dopaminergic neurons in maintaining the coherence of responses to cortical inputs in each territory is not documented. Using extracellular electrophysiological approaches, we investigated to what degree the motor and non-motor regions in the STN are segregated in control and dopamine (DA) depleted rats. We performed electrical stimulation of different cortical areas and recorded STN neuronal responses. We showed that motor and non-motor cortico-subthalamic pathways are not fully segregated, but partially integrated in the rat. This integration was mostly present through the indirect pathway. The spatial distribution and response latencies were the same in sham and 6-hydroxydopamine lesioned animals. The inhibitory phase was, however, less apparent in the lesioned animals. In conclusion, this study provides the first evidence that motor and non-motor cortico-subthalamic pathways in the rat are not fully segregated, but partially integrated. This integration was mostly present through the indirect pathway. We also show that the inhibitory phase induced by GABAergic inputs from the external segment of the globus pallidus is reduced in the DA-depleted animals.


Subject(s)
Dopamine/deficiency , Dopaminergic Neurons/metabolism , Limbic System/metabolism , Motor Cortex/metabolism , Subthalamic Nucleus/metabolism , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Electric Stimulation , Evoked Potentials, Motor , GABAergic Neurons/metabolism , Globus Pallidus/metabolism , Limbic System/drug effects , Limbic System/pathology , Male , Motor Cortex/drug effects , Motor Cortex/pathology , Neural Inhibition , Neural Pathways/metabolism , Oxidopamine/pharmacology , Rats, Sprague-Dawley , Reaction Time , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology , Time Factors , gamma-Aminobutyric Acid/metabolism
18.
Front Neural Circuits ; 10: 87, 2016.
Article in English | MEDLINE | ID: mdl-27857684

ABSTRACT

Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural populations. Approach: Motor cortex evoked local field potentials and unit activity were measured in the subthalamic region, with a 3D measurement grid consisting of 320 measurement points and high spatial resolution. This allowed us to visualize the evoked synaptic input by estimating the current source density (CSD) from the measured local field potentials, using the inverse CSD method. At the same time, the neuronal output of the cells within the grid is assessed by calculating post stimulus time histograms. Main results: The CSD method resulted in clear and distinguishable sources and sinks of the neuronal input activity in the STN after motor cortex stimulation. We showed that the center of the synaptic input of the STN from the motor cortex is located dorsal to the input from globus pallidus. Significance: For the first time we have performed CSD analysis on motor cortex stimulation evoked LFP responses in the rat STN as a proof of principle. Our results suggest that the CSD method can be used to gain new insights into the spatial extent of synaptic pathways in brain structures.


Subject(s)
Electroencephalography/methods , Evoked Potentials/physiology , Motor Cortex/physiology , Subthalamic Nucleus/physiology , Action Potentials/physiology , Animals , Electric Stimulation , Male , Rats , Rats, Sprague-Dawley
19.
Neuroscience ; 331: 13-23, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27316552

ABSTRACT

Manganese (Mn) intoxication is associated with neurological dysfunctions collectively known as Parkinsonism or Manganism. Like in Parkinson's disease, Manganism is associated with motor disturbances, together with non-motor symptoms including cognitive and neuropsychiatric deficits. Although sleep dysfunctions are commonly reported among workers exposed to Mn, their underlying pathophysiology remains unknown. In this study, we investigated the rest-activity rhythms in rats treated daily with MnCl2 (10mg/kg, i.p) for 5weeks. Locomotor activity was assessed under a light-dark (LD) cycle, constant darkness (DD) and during adjustment to 6h shifts of the LD cycle. In LD conditions, Mn-treated rats exhibited a more fragmented and less stable rest-activity rhythm in addition to a reduction in the total 24-h amount of locomotor activity as well as in the activity confined to the active dark phase of the LD. Consequently, a significant decrease in the amplitude of the rest-activity rhythm was observed. These disturbances were displayed during and after Mn treatment. Furthermore, after the 6-h phase advance of the LD cycle, Mn-treated rats failed to re-adjust accurately their behavioral activity to the new shifted LD cycle. Upon release from LD into DD, Mn-treated rats expressed a normal and stable free-running period of their rest-activity rhythm (23.92±0.07h in Mn group vs. 24.01±0.04h in control rats). However, their rest-activity rhythm remained highly fragmented and less stable. Our results provide the first evidence that chronic Mn intoxication leads to impairment of rest-activity rhythms in addition to the motor and non-motor disturbances reported in Manganism.


Subject(s)
Circadian Rhythm/drug effects , Manganese/toxicity , Motor Activity/drug effects , Actigraphy , Animals , Circadian Rhythm/physiology , Disease Models, Animal , Male , Motor Activity/physiology , Photoperiod , Random Allocation , Rats, Wistar , Time Factors
20.
Eur Neuropsychopharmacol ; 26(8): 1297-309, 2016 08.
Article in English | MEDLINE | ID: mdl-27234917

ABSTRACT

The control of the secretory activity of serotonergic neurons has been pointed out to reduce motor and non-motor side effects of the antiparkinsonian drug L-DOPA. This strategy deserves further investigation because it is presently unclear whether L-DOPA promotes a non-vesicular release of dopamine and serotonin from serotonergic neurons. To get a full neurochemical picture compatible with the existence of such a mechanism, we combined multisite intracerebral microdialysis, post mortem tissue measurement and single unit extracellular recordings in the dorsal raphe nucleus from hemiparkinsonian rats. L-DOPA (3-100mg/kg, ip.) non-homogeneously decreased extracellular serotonin levels in the striatum, substantia nigra pars reticulata, hippocampus and prefrontal cortex and homogenously serotonin tissue content in the striatum, cortex and cerebellum. L-DOPA (12mg/kg) did not modify the firing rate or pattern of serotonergic-like neurons recorded in the dorsal raphe nucleus. When focusing on serotonin release in the prefrontal cortex and the hippocampus, we found that L-DOPA (12 or 100mg/kg) enhanced serotonin extracellular levels in both regions upon Ca(2+) removal. Concomitantly, L-DOPA-stimulated dopamine release partly persisted in the absence of Ca(2+) in a region-dependent manner. Local application of the serotonin reuptake inhibitor citalopram (1µM) blunted the responses to L-DOPA (3-12mg/kg), measured as extracellular dopamine levels, most prominently in the hippocampus. These data stress that L-DOPA, already at low to moderate doses, promotes non-vesicular releases of serotonin and dopamine in a region-dependent manner.


Subject(s)
Antiparkinson Agents/therapeutic use , Disease Models, Animal , Dopaminergic Neurons/drug effects , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Serotonergic Neurons/drug effects , Serotonin/metabolism , Action Potentials/drug effects , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Cholestanols , Citalopram/pharmacology , Dopamine Agents/administration & dosage , Dopamine Agents/pharmacology , Dopamine Agents/therapeutic use , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Hydroxyindoleacetic Acid/metabolism , Levodopa/administration & dosage , Levodopa/metabolism , Levodopa/pharmacology , Male , Organ Specificity , Parkinson Disease/physiopathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats, Sprague-Dawley , Serotonergic Neurons/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Single-Cell Analysis , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...