Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Plast Reconstr Aesthet Surg ; 66(5): 712-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23357708

ABSTRACT

BACKGROUND: Adipose tissue grafting is a promising method in the field of surgical filling. We studied the effect of centrifugation on fat grafts, and we propose an optimised protocol for the improvement of adipose tissue viability. METHODS: Adipose tissue was subjected to different centrifugations, and the volumes of interstitial liquid and oil released were measured to choose the optimal condition. Tissue from this condition was then compared to tissue obtained from two traditional techniques: strong centrifugation (commonly 3 min at 3000 rpm/900 g), and decantation, by injecting into immunodeficient mice. The cytokine interleukin-6 (IL-6) and chemokine monocyte chemotactic protein-1 (MCP-1) were assayed 24 h post-injection, and after 1 month of grafting the state of the lipografts was evaluated through macroscopic and histological analysis, with oil gap area measurement. RESULTS: Strong centrifugation (900 g, 1800 g) is deleterious for adipose tissue because it leads to until threefold more adipocyte death compared to low centrifugation (100 g, 400 g). In addition, mice injected with strong centrifuged and non-centrifuged adipose tissue have higher rates of blood IL-6 and MCP-1, compared to those grafted with soft centrifuged fat. Moreover, extensive lipid vacuoles were detectable on histological sections of the non-centrifuged lipografts, whereas lipografts from soft centrifugation contain a higher amount of connective tissue containing collagen fibres. CONCLUSION: It is necessary to wash and centrifuge adipose tissue before reinjection in order to remove infiltration liquid and associated toxic molecules, which in the long term are deleterious for the graft. However, strong centrifugation is not recommended since it leads very quickly to greater adipocyte death. Thus, soft centrifugation (400 g/1 min), preceded by washings, seems to be the most appropriate protocol for the reinjection of adipose tissue.


Subject(s)
Adipose Tissue/transplantation , Tissue and Organ Harvesting/methods , Adipocytes/cytology , Adipocytes/transplantation , Adipose Tissue/cytology , Adult , Animals , Cell Survival , Cells, Cultured , Centrifugation/methods , Female , Humans , Mice , Mice, SCID
2.
Aesthetic Plast Surg ; 37(1): 144-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23238646

ABSTRACT

BACKGROUND: Adipose stem cells have gained great interest in plastic and reconstructive surgery with their ability to improve engraftment after fat transfer for soft tissue filling. It is therefore essential to know the effect of the drugs commonly used during the lipoaspiration procedure, such as lidocaine and adrenaline. Indeed, these drugs are infiltrated at the fat donor site for local anesthesia and for reduction of bleeding. This study analyzed the effects of these drugs on the viability of adipose-derived stem cells and on their inflammatory status. METHODS: Adipose-derived stem cells from lipoaspirates were grown in culture before being treated with different clinical doses of lidocaine at different times of exposure (1-24 h), and with adrenaline (1 µg/mL). Cytotoxicity was measured by lactate dehydrogenase assay and by flow cytometry with annexin V/propidium iodide staining. In parallel, the secretion of the proinflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) was tested by enzyme-linked immunoassay. RESULTS: Lidocaine affected cell viability after 24 h, even when the cells were exposed for only 1 or 2 h. Apoptosis was not involved in lidocaine cytotoxicity. Regarding inflammation, no TNFα was produced, and lidocaine decreased the levels of IL-6 and MCP-1 in a dose-dependent manner. In contrast, adrenaline did not influence cell viability or cytokine secretions. CONCLUSIONS: Adipose tissue should be handled appropriately to remove lidocaine and adrenaline, with such procedures as washing and centrifugation. This study provides new insights into the use of lidocaine and adrenaline for fat transfer or stem cell isolation from lipoaspirates. LEVEL OF EVIDENCE II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipocytes/drug effects , Adipose Tissue/cytology , Anesthetics, Local/pharmacology , Epinephrine/pharmacology , Lidocaine/pharmacology , Stem Cells/drug effects , Vasoconstrictor Agents/pharmacology , Adult , Cells, Cultured , Female , Humans , Middle Aged
3.
Lipids Health Dis ; 11: 175, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23259689

ABSTRACT

BACKGROUND: On the basis that high fat diet induces inflammation in adipose tissue, we wanted to test the effect of dietary saturated and polysunsaturated fatty acids on human adipose tissue and adipocytes inflammation. Moreover we wanted to determine if TLR2 and TLR4 are involved in this pathway. METHODS: Human adipose tissue and adipocytes primary cultures were treated with endotoxin-free BSA conjugated with SFA (lauric acid and palmitic acid--LA and PA) and PUFA (eicosapentaeneic acid, docosahexaenoic acid and oleic acid--EPA, DHA and OA) with or without LPS. Cytokines were then assayed by ELISA (TNF-alpha, IL-6 and MCP-1). In order to determine if TLR2 and TLR4 are activated by fatty acid (FA), we used HEK-Blue cells transfected by genes from TLR2 or TLR4 pathways associated with secreted alkaline phosphatase reporter gene. RESULTS: None of the FA tested in HEK-Blue cells were able to activate TLR2 or TLR4, which is concordant with the fact that after FA treatment, adipose tissue and adipocytes cytokines levels remain the same as controls. However, all the PUFA tested: DHA, EPA and to a lesser extent OA down-regulated TNF-alpha, IL-6 and MCP-1 secretion in human adipose tissue and adipocytes cultures. CONCLUSIONS: This study first confirms that FA do not activate TLR2 and TLR4. Moreover by using endotoxin-free BSA, both SFA and PUFA tested were not proinflammatory in human adipose tissue and adipocytes model. More interestingly we showed that some PUFA exert an anti-inflammatory action in human adipose tissue and adipocytes model. These results are important since they clarify the relationship between dietary fatty acids and inflammation linked to obesity.


Subject(s)
Adipocytes , Adipose Tissue , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/growth & development , Animals , Cells, Cultured , Diet, High-Fat , Down-Regulation/drug effects , Fatty Acids/administration & dosage , Fatty Acids, Unsaturated/administration & dosage , Humans , Inflammation/genetics , Inflammation/metabolism , Mice
4.
J Inflamm (Lond) ; 8: 33, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22087859

ABSTRACT

BACKGROUND: Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1) antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. METHODS: Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA) and expression analysis (qPCR). Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. RESULTS: In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor). Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. CONCLUSION: We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

5.
Lipids Health Dis ; 9: 75, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20642861

ABSTRACT

BACKGROUND: The risk of cardiovascular disease is inversely correlated to level of plasma HDL-c. Moreover, reverse cholesterol transport (RCT) from peripheral tissues to the liver is the most widely accepted mechanism linked to the anti-atherosclerotic activity of HDL. The apolipoprotein A-I (apoA-I) and the ABC transporters play a key role in this process.Adipose tissue constitutes the body's largest pool of free cholesterol. The adipose cell could therefore be regarded as a key factor in cholesterol homeostasis. The present study investigates the capacity of primary cultures of mature human adipocytes to release cholesterol and explores the relationships between apoA-I, ABCA1, and apoE as well as the signaling pathways that could be potentially involved. RESULTS: We demonstrate that apoA-I induces a strong increase in cholesterol release and apoE secretion from adipocytes, whereas it has no transcriptional effect on ABCA1 or apoE genes. Furthermore, brefeldin A (BFA), an intracellular trafficking inhibitor, reduces basal cholesterol and apoE secretion, but does not modify induction by apoA-I. The use of statins also demonstrates that apoA-I stimulated cholesterol release is independent of HMG-CoA reductase activation. CONCLUSION: Our work highlights the fact that adipose tissue, and particularly adipocytes, may largely contribute to RCT via a mechanism specifically regulated within these cells. This further supports the argument that adipose tissue must be regarded as a major factor in the development of cardiovascular diseases, in particular atherosclerosis.


Subject(s)
Adipocytes/metabolism , Apolipoprotein A-I/physiology , Apolipoproteins E/metabolism , Cardiovascular Diseases/physiopathology , Cholesterol/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adipocytes/drug effects , Adult , Apolipoproteins E/genetics , Atherosclerosis/physiopathology , Cells, Cultured , Cyclic AMP/metabolism , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Middle Aged , Second Messenger Systems/drug effects , Secretory Pathway/drug effects , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Subcutaneous Fat/physiopathology , Time Factors
6.
J Inflamm (Lond) ; 7: 1, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20148136

ABSTRACT

BACKGROUND: The development of obesity has been linked to an inflammatory process, and the role of adipose tissue in the secretion of pro-inflammatory molecules such as IL-6 or TNFalpha has now been largely confirmed. Although TNFalpha secretion by adipose cells is probably induced, most notably by TLR ligands, the activation and secretion pathways of this cytokine are not yet entirely understood. Moreover, given that macrophagic infiltration is a characteristic of obesity, it is difficult to clearly establish the level of involvement of the different cellular types present within the adipose tissue during inflammation. METHODS: Primary cultures of human adipocytes and human peripheral blood mononuclear cells were used. Cells were treated with a pathogen-associated molecular pattern: LPS, with and without several kinase inhibitors. Western blot for p38 MAP Kinase was performed on cell lysates. TNFalpha mRNA was detected in cells by RT-PCR and TNFalpha protein was detected in supernatants by ELISA assays. RESULTS: WE SHOW FOR THE FIRST TIME THAT THE PRODUCTION OF TNFALPHA IN MATURE HUMAN ADIPOCYTES IS MAINLY DEPENDENT UPON TWO PATHWAYS: NFkappaB and p38 MAP Kinase. Moreover, we demonstrate that the PI3Kinase pathway is clearly involved in the first step of the LPS-pathway. Lastly, we show that adipocytes are able to secrete a large amount of TNFalpha compared to macrophages. CONCLUSION: This study clearly demonstrates that the LPS induced activation pathway is an integral part of the inflammatory process linked to obesity, and that adipocytes are responsible for most of the secreted TNFalpha in inflamed adipose tissue, through TLR4 activation.

7.
Atherosclerosis ; 206(1): 127-33, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19324361

ABSTRACT

Diet is an important environmental factor modulating the onset of atherosclerosis. The aim of this study was to evaluate the effects of different dairy-based food products on early atherogenesis using both conventional and metabonomic approaches in hyperlipidemic hamsters. The hamsters received up to 200 g/kg of fat as anhydrous butter or cheese made from various milk fats or canola-based oil (CV), in addition to a non-atherogenic low-fat diet. Aortic cholesteryl ester loading was considered to be an early atherogenic point, and metabolic changes linked to atherogenesis were measured using plasma (1)H NMR-based metabonomics. The lowest atherogenicity was obtained with the plant-oil cheese diet, followed by the dairy fat cheese diet, while the greatest atherogenicity was observed with the butter diet (P<0.05). Disease outcome was correlated with conventional plasma biomarkers (total cholesterol, triglycerides, LDL cholesterol, R(2)=0.42-0.60). NMR plasma metabonomics selectively captured part of the diet-induced metabotypes correlated with aortic cholesteryl esters (R(2)=0.63). In these metabotypes, VLDL lipids, cholesterol, and N-acetylglycoproteins (R(2) range: 0.45-0.51) were the most positively correlated metabolites, whereas a multimetabolite response at 3.75 ppm, albumin lysyl residues, and trimethylamine-N-oxide were the most negatively correlated metabolites (R(2) range: 0.43-0.63) of the aortic cholesteryl esters. Collectively, these metabolites predicted 89% of atherogenic variability compared to the 60% predicted by total plasma cholesterol alone. In conclusion, we show that the food environment can modulate the atherogenic effect of dairy fat. This proof-of-principle study demonstrates the first use of plasma metabonomics for improving the prognosis of diet-induced atherogenesis, revealing novel potential disease biomarkers.


Subject(s)
Atherosclerosis/etiology , Dairy Products/adverse effects , Diet, Atherogenic , Animals , Atherosclerosis/metabolism , Cholesterol Esters/metabolism , Cricetinae , Diet, Fat-Restricted , Dietary Fats/adverse effects , Hyperlipidemias/complications , Male , Mesocricetus , Metabolomics , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL