Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Arch Pathol Lab Med ; 147(11): 1307-1314, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-36745202

ABSTRACT

CONTEXT.­: An immunohistochemistry (IHC) assay developed to detect lymphocyte-activation gene 3 (LAG-3), a novel immune checkpoint inhibitor target, has demonstrated high analytic precision and interlaboratory reproducibility using a Leica staining platform, but it has not been investigated on other IHC staining platforms. OBJECTIVE.­: To evaluate the performance of LAG-3 IHC assays using the 17B4 antibody clone across widely used IHC staining platforms: Agilent/Dako Autostainer Link 48 and VENTANA BenchMark ULTRA compared to Leica BOND-RX (BOND-RX). DESIGN.­: Eighty formalin-fixed, paraffin-embedded melanoma tissue blocks were cut into consecutive sections and evaluated using staining platform-specific IHC assays with the 17B4 antibody clone. Duplicate testing was performed on the BOND-RX platform to assess intraplatform agreement. LAG-3 expression using a numeric score was evaluated by a pathologist and with a digital scoring algorithm. LAG-3 positivity was determined from manual scores using a 1% or greater cutoff. RESULTS.­: LAG-3 IHC staining patterns and intensities were visually similar across all 3 staining platforms. Spearman and Pearson correlations were 0.75 or greater for interplatform and BOND-RX intraplatform concordance when LAG-3 expression was evaluated with a numeric score determined by a pathologist. Correlation increased with a numeric score determined with a digital scoring algorithm (Spearman and Pearson correlations ≥0.88 for all comparisons). Overall percentage agreement was 77.5% or greater for interplatform and BOND-RX intraplatform comparisons when LAG-3 positivity was determined using a 1% or greater cutoff. CONCLUSIONS.­: Data presented here demonstrate that LAG-3 expression can be robustly and reproducibly assessed across 3 major commercial IHC staining platforms using the 17B4 antibody clone.

2.
Nat Cancer ; 4(1): 43-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36646856

ABSTRACT

Prolonged interferon (IFN) signaling in cancer cells can promote resistance to immune checkpoint blockade (ICB). How cancer cells retain effects of prolonged IFN stimulation to coordinate resistance is unclear. We show that, across human and/or mouse tumors, immune dysfunction is associated with cancer cells acquiring epigenetic features of inflammatory memory. Here, inflammatory memory domains, many of which are initiated by chronic IFN-γ, are maintained by signal transducer and activator of transcription (STAT)1 and IFN regulatory factor (IRF)3 and link histone 3 lysine 4 monomethylation (H3K4me1)-marked chromatin accessibility to increased expression of a subset of IFN-stimulated genes (ISGs). These ISGs include the RNA sensor OAS1 that amplifies type I IFN (IFN-I) and immune inhibitory genes. Abrogating cancer cell IFN-I signaling restores anti-programmed cell death protein 1 (PD1) response by increasing IFN-γ in immune cells, promoting dendritic cell and CD8+ T cell interactions, and expanding T cells toward effector-like states rather than exhausted states. Thus, cancer cells acquire inflammatory memory to augment a subset of ISGs that promote and predict IFN-driven immune dysfunction.


Subject(s)
Interferon Type I , Neoplasms , Animals , Humans , Mice , Epigenetic Memory , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Interferon Type I/pharmacology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction , T-Lymphocytes/immunology
3.
Int J Cancer ; 151(11): 2043-2054, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35932450

ABSTRACT

Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , Humans , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Mice , Nivolumab/pharmacology , Nivolumab/therapeutic use , Receptors, Antigen, T-Cell/genetics
4.
Cell Rep ; 32(9): 108080, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877684

ABSTRACT

The DNA-dependent pattern recognition receptor, cGAS (cyclic GMP-AMP synthase), mediates communication between the DNA damage and the immune responses. Mitotic chromosome missegregation stimulates cGAS activity; however, it is unclear whether progression through mitosis is required for cancercell-intrinsic activation of anti-tumor immune responses. Moreover, it is unknown whether cell cycle checkpoint disruption can restore responses in cancer cells that are recalcitrant to DNAdamage-induced inflammation. Here, we demonstrate that prolonged cell cycle arrest at the G2-mitosis boundary from either excessive DNA damage or CDK1 inhibition prevents inflammatory-stimulated gene expression and immune-mediated destruction of distal tumors. Remarkably, DNAdamage-induced inflammatory signaling is restored in a RIG-I-dependent manner upon concomitant disruption of p53 and the G2 checkpoint. These findings link aberrant cell progression and p53 loss to an expanded spectrum of damage-associated molecular pattern recognition and have implications for the design of rational approaches to augment anti-tumor immune responses.


Subject(s)
Cell Cycle Proteins/metabolism , DNA/genetics , Immunity/genetics , Neoplasms/immunology , RNA/genetics , Humans , Neoplasms/pathology , Signal Transduction
5.
Cell ; 178(4): 933-948.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398344

ABSTRACT

Interferon-gamma (IFNG) augments immune function yet promotes T cell exhaustion through PDL1. How these opposing effects are integrated to impact immune checkpoint blockade (ICB) is unclear. We show that while inhibiting tumor IFNG signaling decreases interferon-stimulated genes (ISGs) in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by exhausted T cells (TEX). In tumors with favorable antigenicity, these TEX mediate rejection. In tumors with neoantigen or MHC-I loss, TEX instead utilize IFNG to drive maturation of innate immune cells, including a PD1+TRAIL+ ILC1 population. By disabling an inhibitory circuit impacting PD1 and TRAIL, blocking tumor IFNG signaling promotes innate immune killing. Thus, interferon signaling in cancer cells and immune cells oppose each other to establish a regulatory relationship that limits both adaptive and innate immune killing. In melanoma and lung cancer patients, perturbation of this relationship is associated with ICB response independent of tumor mutational burden.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung Neoplasms/immunology , Melanoma/immunology , Adoptive Transfer , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Cohort Studies , Female , Gene Knockout Techniques , Humans , Interferon-gamma/antagonists & inhibitors , Killer Cells, Natural/immunology , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Progression-Free Survival , RNA-Seq , Transfection
6.
Front Oncol ; 9: 1577, 2019.
Article in English | MEDLINE | ID: mdl-32083018

ABSTRACT

Nearly half of all Americans will develop cancer at least once in their lifetime. Through improved screening and treatments, the number of cancer survivors is reaching all-time highs. However, survivorship care plans (SCPs) are inconsistently used, denying many survivors access to critical information. This study used 46,408 SCPs generated from 2007 to 2016 and applied machine learning to identify predictors of SCP creation, including cancer type, type of physician, and healthcare center where they received care, as well as regional variations in care plan creation. Identifying these disparities in SCP use is a critical first step in efforts toward expanding access to survivorship care planning. Using a convenience sample of survivors, it is possible to model the factors that predict generation of SCPs either by the survivor or by a healthcare provider. This study identifies several important disparities both survivor intrinsic such as cancer type, as well as treatment associated and geographic differences in SCP generation. Identifying these disparities at the national level across cancer types will allow for more targeted recommendations to improve SCP creation and dissemination in underserved groups.

7.
J Cancer Surviv ; 12(5): 632-638, 2018 10.
Article in English | MEDLINE | ID: mdl-29971637

ABSTRACT

PURPOSE: To understand what factors influence whether a cancer survivor will share their survivorship care plan (SCP) with their healthcare provider (HCP). METHODS: We used data from 3231 cancer survivors who utilized the OncoLink SCP resource between 2009 and 2016. Random forest and stepwise regression were used to identify predictors of SCP satisfaction and barriers to survivors sharing their care plans with their HCPs. RESULTS: Eighty-seven percent of users rated their satisfaction with their SCP as good or better; however, only 70% of survivors planned to share their SCP with their HCP. The most commonly reported reason for not sharing was a feeling that their HCP would not care. Self-reported satisfaction with their SCP was strongest predictor of whether a survivor would share their SCP. Gender, cancer status, number of chemotherapies received, and who was managing their healthcare were all associated with self-reported survivor satisfaction with their SCP. CONCLUSIONS: Survivor satisfaction with SCPs was high, but there was a disconnect in the number of satisfied survivors and the number of survivors planning to share their SCP with their HCP. To bridge this gap, additional prompts that HCPs are expecting this information should be added to the care plans. IMPLICATIONS FOR CANCER SURVIVORS: One of the primary functions of survivorship care plans is to improve communication between survivor and healthcare provider. While survivors are overwhelmingly satisfied with their SCP, additional steps are necessary to get survivors to share their SCP with their HCP.


Subject(s)
Cancer Survivors/psychology , Health Personnel/psychology , Healthcare Disparities/standards , Neoplasms/mortality , Survivorship , Female , Humans , Male , Middle Aged , Patient Satisfaction
8.
Cancer ; 124(1): 183-191, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28885696

ABSTRACT

BACKGROUND: Nearly 1 in 5 Americans will develop skin cancer, and as a result, survivors of skin cancer compose one of the largest groups of cancer survivors. Survivorship care plans (SCPs) are an important tool for improving patient outcomes and provide critical information to both survivors and health care professionals. Recent efforts have been made to expand SCP utilization; however, which patients currently receive SCPs is poorly understood. METHODS: This study used 596 individuals with a diagnosis of melanoma (n = 391) or nonmelanoma skin cancer (n = 205) who had used an Internet-based SCP tool from May 2010 to December 2016 to model the patient and provider characteristics that determine SCP utilization. RESULTS: Survivors were predominantly white (95.3%) and female (56.5%). Survivors who received a treatment summary were more likely to also receive an SCP. University and nonuniversity cancer centers used SCPs at a higher rate than other care settings. Survivors whose care was managed by a team rather than just an individual physician were also more likely to receive an SCP. Survivors older than 70 years at diagnosis were almost twice as likely to receive a plan as survivors who were diagnosed at a younger age. CONCLUSIONS: With a convenience sample of skin cancer survivors, it is possible to model factors that predict the receipt of SCPs. Important variables include the diagnosis age, treatment setting, physician type, and treatment-summary utilization. A closer examination of these variables identified several disparities in care-plan use and, therefore, opportunities to improve the distribution of SCPs. Further validation in additional cohorts of survivors is necessary to confirm these conclusions. Cancer 2018;124:183-91. © 2017 American Cancer Society.


Subject(s)
Aftercare/methods , Cancer Survivors , Melanoma/therapy , Patient Care Planning/statistics & numerical data , Skin Neoplasms/therapy , Survivorship , Academic Medical Centers , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Oncologists , Physicians, Primary Care , Supervised Machine Learning , United States
9.
Nature ; 548(7668): 466-470, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28759889

ABSTRACT

Inflammatory gene expression following genotoxic cancer therapy is well documented, yet the events underlying its induction remain poorly understood. Inflammatory cytokines modify the tumour microenvironment by recruiting immune cells and are critical for both local and systemic (abscopal) tumour responses to radiotherapy. A poorly understood feature of these responses is the delayed onset (days), in contrast to the acute DNA-damage responses that occur in minutes to hours. Such dichotomous kinetics implicate additional rate-limiting steps that are essential for DNA-damage-induced inflammation. Here we show that cell cycle progression through mitosis following double-stranded DNA breaks leads to the formation of micronuclei, which precede activation of inflammatory signalling and are a repository for the pattern-recognition receptor cyclic GMP-AMP synthase (cGAS). Inhibiting progression through mitosis or loss of pattern recognition by stimulator of interferon genes (STING)-cGAS impaired interferon signalling. Moreover, STING loss prevented the regression of abscopal tumours in the context of ionizing radiation and immune checkpoint blockade in vivo. These findings implicate temporal modulation of the cell cycle as an important consideration in the context of therapeutic strategies that combine genotoxic agents with immune checkpoint blockade.


Subject(s)
DNA Damage , Inflammation/metabolism , Micronuclei, Chromosome-Defective , Mitosis , Receptors, Pattern Recognition/metabolism , Signal Transduction , Animals , CTLA-4 Antigen/antagonists & inhibitors , Cell Cycle Checkpoints , Cell Line, Tumor , DNA Breaks, Double-Stranded , Disease Models, Animal , Female , Humans , Inflammation/pathology , Interferons/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism
10.
Cell ; 170(2): 352-366.e13, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28709002

ABSTRACT

Interactions between stromal fibroblasts and cancer cells generate signals for cancer progression, therapy resistance, and inflammatory responses. Although endogenous RNAs acting as damage-associated molecular patterns (DAMPs) for pattern recognition receptors (PRRs) may represent one such signal, these RNAs must remain unrecognized under non-pathological conditions. We show that triggering of stromal NOTCH-MYC by breast cancer cells results in a POL3-driven increase in RN7SL1, an endogenous RNA normally shielded by RNA binding proteins SRP9/14. This increase in RN7SL1 alters its stoichiometry with SRP9/14 and generates unshielded RN7SL1 in stromal exosomes. After exosome transfer to immune cells, unshielded RN7SL1 drives an inflammatory response. Upon transfer to breast cancer cells, unshielded RN7SL1 activates the PRR RIG-I to enhance tumor growth, metastasis, and therapy resistance. Corroborated by evidence from patient tumors and blood, these results demonstrate that regulation of RNA unshielding couples stromal activation with deployment of RNA DAMPs that promote aggressive features of cancer. VIDEO ABSTRACT.


Subject(s)
Breast Neoplasms/pathology , Exosomes/pathology , RNA, Untranslated/metabolism , Stromal Cells/pathology , Tumor Microenvironment , Breast Neoplasms/metabolism , DEAD Box Protein 58/metabolism , Exosomes/metabolism , Humans , Interferon Regulatory Factors/metabolism , MCF-7 Cells , Neoplasm Metastasis , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Receptors, Immunologic , Receptors, Pattern Recognition/metabolism , Signal Recognition Particle/metabolism , Stromal Cells/metabolism , Virus Diseases/metabolism
11.
Cell ; 167(6): 1540-1554.e12, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912061

ABSTRACT

Therapeutic blocking of the PD1 pathway results in significant tumor responses, but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Melanoma/immunology , Melanoma/therapy , Radioimmunotherapy , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Heterografts , Humans , Interferons/immunology , Melanoma/drug therapy , Melanoma/radiotherapy , Mice , Neoplasm Transplantation , STAT1 Transcription Factor , T-Lymphocytes/immunology
12.
Nature ; 520(7547): 373-7, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25754329

ABSTRACT

Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Cell Cycle Checkpoints/drug effects , Melanoma/drug therapy , Melanoma/immunology , Melanoma/radiotherapy , T-Lymphocytes/drug effects , T-Lymphocytes/radiation effects , Animals , B7-H1 Antigen/metabolism , Female , Humans , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/radiation effects
13.
ScientificWorldJournal ; 2013: 796029, 2013.
Article in English | MEDLINE | ID: mdl-23690748

ABSTRACT

Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional (18)F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM) due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. (18)F-Fluorothymidine (FLT) in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of (18)F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT), and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with (18)F-FDG and (18)F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67), DNA damage and repair (γH2AX), hypoxia (HIF-1α), and angiogenesis (VEGF). Results. We confirmed that (18)F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that (18)F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. (18)F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Brain/metabolism , Brain/radiation effects , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Radiotherapy, Conformal/methods , Animals , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Dideoxynucleosides/pharmacokinetics , Female , Glioblastoma/diagnostic imaging , Humans , Metabolic Clearance Rate/radiation effects , Mice , Mice, Nude , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution/radiation effects
14.
J Vis Exp ; (67)2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23051742

ABSTRACT

Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Luminescent Measurements/methods , Neoplasm Transplantation/methods , Stereotaxic Techniques , Transplantation, Heterologous/methods , Animals , Brain Neoplasms/chemistry , Cell Line, Tumor , Glioblastoma/chemistry , Humans , Mice , Mice, Nude
15.
Transl Oncol ; 5(4): 230-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22937174

ABSTRACT

Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.

16.
PLoS One ; 5(3): e9564, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20221439

ABSTRACT

BACKGROUND: Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity. CONCLUSIONS/SIGNIFICANCE: We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected by heavy metal poisoning in humans. We also showed that coelomocytes are involved in detoxification of heavy metals. Therefore, the HMT-1-dependent detoxification pathway and coelomocytes of C. elegans emerge as novel models for studies of heavy metal-promoted diseases.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cadmium/chemistry , Caenorhabditis elegans Proteins/metabolism , Metals, Heavy/chemistry , ATP-Binding Cassette Transporters/genetics , Alleles , Aminoacyltransferases/chemistry , Animals , Arsenic/pharmacology , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Copper/pharmacology , Green Fluorescent Proteins/metabolism , Intestinal Mucosa/metabolism , Liver/pathology , Molecular Biology , Neurons/metabolism , Oxidative Stress , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...