Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Food Chem ; 424: 136475, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37269633

ABSTRACT

In this work, two sensitive droplet-based luminescent assays with smartphone readout for the determination of trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) are reported. Both assays exploit the luminescence quenching of copper nanoclusters (CuNCs) produced when exposed to volatile nitrogen bases. In addition, hydrophobic-based cellulose substrates demonstrated their suitability as holders for both in-drop volatile enrichment and subsequent smartphone-based digitization of the enriched colloidal solution of CuNCs. Under optimal conditions, enrichment factors of 181 and 153 were obtained with the reported assays for TMA-N and TVB-N, respectively, leading to methodological LODs of 0.11 mg/100 g and 0.27 mg/100 g for TMA-N and TVB-N, respectively. The repeatability, expressed as RSD, was 5.2% and 5.6% for TMA-N and TVB-N, respectively (N = 8). The reported luminescent assays were successfully applied to the analysis of fish samples, showing statistically comparable results to those obtained with the reference methods of analysis.


Subject(s)
Luminescence , Smartphone , Animals , Methylamines/analysis , Fishes , Nitrogen/analysis
2.
Anal Bioanal Chem ; 415(18): 4039-4060, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37000210

ABSTRACT

The growing interest in the development of cost-effective, straightforward, and rapid analytical systems has found cellulose-based materials, including cellulose derivatives, cellulose-based gels, nanocellulosic materials, and the corresponding (nano)cellulose-based composites, to be valuable platforms for sensor development. The present work presents recent advances in the development of cellulose-based sensors for the determination of volatile analytes and derivatives of analytical relevance. In particular, strategies described in the literature for the fabrication and modification of cellulose-based substrates with responsive materials are summarized. In addition, selected contributions reported in the field of paper-based volatile sensors are discussed, with a particular emphasis on quick response (QR) code paper-based platforms, intelligent films for food freshness monitoring, and sensor arrays for volatile discrimination purposes. Furthermore, analytical strategies devised for the determination of ionic species by in situ generation of volatile derivatives in both paper-based analytical devices (PADs) and microfluidic PADs will also be described.


Subject(s)
Cellulose , Gases , Microfluidics , Food
3.
Anal Methods ; 15(7): 951-958, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36723195

ABSTRACT

In this work, a new analytical approach based on ultrasound-assisted emulsification followed by a photoreaction with methylene blue (MB) and kinetic analysis by UV-vis spectrophotometry has been developed for the determination of L-ascorbic acid (AA) in cosmetic samples. The emulsification of cosmetic samples results in a transparent solution that allows an easy and rapid quantitation by UV-vis spectrophotometry. The emulsified sample is mixed with a MB aqueous solution and this mixture is subjected to irradiation with a tungsten lamp for 5 min (fixed-time kinetic assay). A reduction in the MB absorbance intensity at 664 nm occurs as the concentration of AA increases. The observed change in absorbance intensity was used for calibration and further quantitation using the relationship of absorbance logarithm vs. AA concentration (µg mL-1). In order to achieve an optimal response, different parameters involved in the reaction between AA and MB were fully investigated. Under optimal conditions, the limits of detection and quantification were 0.04 µg mL-1 and 0.15 µg mL-1, respectively. Repeatability and reproducibility, expressed as relative standard deviation, were in the range of 0.4-0.6% and 0.6-1.5%, respectively. Finally, the proposed method was applied to the analysis of 15 cosmetic samples, namely, (i) 12 samples without AA, which were used to carry out recovery studies, obtaining results in the range of 97.5-100.7%; (ii) 3 serum samples containing pure AA among their ingredients, which were used for AA stability studies.


Subject(s)
Ascorbic Acid , Cosmetics , Ascorbic Acid/analysis , Reproducibility of Results , Kinetics , Vitamins/analysis , Spectrophotometry/methods , Cosmetics/analysis , Methylene Blue
4.
Anal Chim Acta ; 1239: 340729, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628727

ABSTRACT

BACKGROUND: In this work, a novel analytical approach based on the photocatalytic decomposition of N-nitrosamines combined with headspace thin-film microextraction of the generated nitrogen oxides such as NO has been developed for the determination of the acyclic N-nitrosamine fraction in drinking water samples. A hydrophilic cellulose substrate modified with fluorescent silver nanoclusters (Ag NCs) was used both as extractant and sensing platform. A quenching effect of Ag NCs fluorescence occurs as the concentration of N-nitrosamines increases. Front-face fluorescence spectroscopy with a solid sample holder was employed for directly measuring the fluorescence quenching onto the cellulose substrate. RESULTS: In order to achieve an optimal analytical response, different parameters involved in the photocatalytic reaction as well as those concerning the microextraction step were fully investigated. It is demonstrated that the photodegradation rate of cyclic N-nitrosamines at acidic pH is much lower than that of acyclic ones, which can be the basis for the determination of the later fraction in waters. Under optimal conditions, a detection limit for the acyclic N-nitrosamine fraction around 0.08 µg L-1 using N-nitrosodimethylamine (NDMA) as model compound for calibration was obtained. Several drinking waters were spiked with acyclic N-nitrosamines showing recoveries in the range of 98-102% with a relative standard deviation of 3-4% (N = 3). SIGNIFICANCE AND NOVELTY: N-nitrosamines generated as by-products during disinfection processes applied to water cause multiple adverse effects on human health being classified as potential human carcinogens. This study highlights the suitability of a fluorescent paper-based sensor for the rapid analysis of the acyclic N-nitrosamine fraction (i.e. the most abundant fraction) as a total index in drinking water, being useful as screening tool before exhaustive chromatographic analysis, which saves costs, time and reduces waste generation.


Subject(s)
Drinking Water , Nitrosamines , Water Pollutants, Chemical , Humans , Nitrosamines/analysis , Drinking Water/analysis , Dimethylnitrosamine/analysis , Carcinogens , Disinfection/methods , Water Pollutants, Chemical/analysis
5.
ACS Sens ; 7(3): 839-848, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35285629

ABSTRACT

The present work reports on the assessment of widely available waterproof cellulose-based substrates for the development of sensitive in-drop plasmonic sensing approaches. The applicability of three inexpensive substrates, namely, Whatman 1PS, polyethylene-coated filter paper, and tracing paper, as holders for microvolumes of colloidal solutions was evaluated. Waterproof cellulose-based substrates demonstrated to be highly convenient platforms for analytical purposes, as they enabled in situ generation of volatiles and syringeless drop exposure unlike conventional single-drop microextraction approaches and can behave as sample compartments for smartphone-based colorimetric sensing in an integrated way. Remarkably, large drop volumes (≥20 µL) of colloidal solutions can be employed for enrichment processes when using Whatman 1PS as holder. In addition, the stability and potential applicability of spherical, rod-shaped, and core-shell metallic NPs onto waterproof cellulose-based substrates was evaluated. In particular, Au@AgNPs showed potential for the colorimetric detection of in situ generated H2S, I2, and Br2, whereas AuNRs hold promise for I2, Br2, and Hg0 colorimetric sensing. As a proof of concept, a smartphone-based colorimetric assay for determination of acid-labile sulfide in environmental water samples was developed with the proposed approach taking advantage of the ability of Au@AgNPs for H2S sensing. The assay showed a limit of detection of 0.46 µM and a repeatability of 4.4% (N = 8), yielding satisfactory recoveries (91-107%) when applied to the analysis of environmental waters.


Subject(s)
Cellulose , Colorimetry , Acids , Smartphone , Sulfides
6.
Anal Chim Acta ; 1191: 339293, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033243

ABSTRACT

In this work, a new analytical approach based on ultrasound-assisted dispersive (micro)solid phase extraction (US-D-µSPE) using TpBD-Me2 covalent organic framework (COF) as adsorbent for simple, rapid and selective fluorescent determination of two polycyclic synthetic fragrances in seawater, i.e., 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-(γ)-2-benzopyran (HHCB), branded galaxolide®, and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), branded tonalide®, is proposed. Different parameters involved in both adsorption and desorption steps were optimized in order to obtain the best results. High adsorption efficiencies in the range of 91.2-97.8% were achieved for both analytes. Desorption efficiencies of ∼98% for AHTN and HHCB were obtained using methanol as solvent, rendering the material recyclable with merely minor losses in adsorption efficiency after five consecutive cycles of adsorption/desorption. Limits of detection (LODs) were 0.082 µg L-1 and 0.070 µg L-1 for AHTN and HHCB, respectively. The proposed method was successfully applied for the analysis of seawater without the need for a previous sample treatment, e.g., pH adjustment. Recoveries in the range of 90.4-101.2% with a relative standard deviation of 5.8% were obtained for both fragrances. The results proved the great capacity of TpBD-Me2 COF for the selective sorption of polycyclic fragrances in combination with fluorescent detection, being highly promising for application to environmental monitoring of other emerging organic pollutants.


Subject(s)
Metal-Organic Frameworks , Perfume , Water Pollutants, Chemical , Odorants , Seawater , Solid Phase Extraction , Water Pollutants, Chemical/analysis
7.
Anal Chim Acta ; 1186: 339125, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34756267

ABSTRACT

The present work reports on the assessment of luminescent probes derived from citric acid (CA) and ß-aminothiols (namely, l-cysteine (Cys) and cysteamine) for instrumental and smartphone-based fluorimetric sensing purposes. Remarkably, the evaluated luminescent probes derived from natural compounds showed pH-dependent dual excitation/dual emission features. Both fluorophores hold promise for the ratiometric fluorimetric sensing of pH, being especially convenient for the smartphone-based sensing of pH via ratiometric analysis by proper selection of B and G color channels. Time dependent density functional theory (TDDFT) calculations allowed to substantiate the pH dependent structure-property relationship and to unveil the critical role of the CA derived carboxyl group, these findings contributing to the fundamental knowledge on these systems for the rational design of new fluorophores and in establishing fluorescence sensing mechanisms of CA-derived systems. Besides, paper-based devices modified with CA-Cys were implemented in a three-phase separation approach for sensitive and selective ammonia sensing, yielding a remarkable enrichment factor of 389 and a limit of detection of 37 µM under optimal conditions. The proposed approach was successfully applied to the determination of ammonia nitrogen and extractable ammonium in water samples and marine sediments, respectively.


Subject(s)
Ammonia , Citric Acid , Fluorescent Dyes , Hydrogen-Ion Concentration , Models, Theoretical
8.
Sensors (Basel) ; 21(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34833647

ABSTRACT

Lab-on-paper technologies, also known as paper-based analytical devices (PADs), have received increasing attention in the last years, and nowadays, their use has spread to virtually every application area, i.e., medical diagnostic, food safety, environmental monitoring, etc. Advantages inherent to on-field detection, which include avoiding sampling, sample preparation and conventional instrumentation in central labs, are undoubtedly driving many developments in this area. Heavy metals represent an important group of environmental pollutants that require strict controls due to the threat they pose to ecosystems and human health. In this overview, the development of PADs for Hg monitoring, which is considered the most toxic metal in the environment, is addressed. The main emphasis is placed on recognition elements (i.e., organic chromophores/fluorophores, plasmonic nanoparticles, inorganic quantum dots, carbon quantum dots, metal nanoclusters, etc.) employed to provide suitable selectivity and sensitivity. The performance of both microfluidic paper-based analytical devices and paper-based sensors using signal readout by colorimetry and luminescence will be discussed.


Subject(s)
Mercury , Metals, Heavy , Colorimetry , Ecosystem , Humans , Luminescence
9.
Anal Chim Acta ; 1158: 238108, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33863416

ABSTRACT

The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.

10.
Sensors (Basel) ; 21(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467146

ABSTRACT

The development of disposable sensors that can be easily adapted to every analytical problem is currently a hot topic that is revolutionizing many areas of science and technology. The need for decentralized analytical measurements at real time is increasing for solving problems in areas such as environment pollution, medical diagnostic, food quality assurance, etc., requiring fast action. Despite some current limitations of these devices, such as insufficient detection capability at (ultra)trace level and risk of interferent effects due to matrix, they allow low-cost analysis, portability, low sample consumption, and fast response. In the last years, development of paper-based analytical devices has undergone a dramatic increase for on-site detection of toxic metal ions and other pollutants. Along with the great availability of cellulose substrates, the immobilization of receptors providing enhanced recognition ability, such as a variety of nanomaterials, has driven the design of novel sensing approaches. This review is aimed at describing and discussing the different possibilities arisen with the use of different nanoreceptors (e.g., plasmonic nanoparticles, quantum dots, carbon-based fluorescent nanoparticles, etc.) immobilized onto cellulose-based substrates for trace element detection, their advantages and shortcomings.

11.
J Sep Sci ; 43(9-10): 1908-1914, 2020 May.
Article in English | MEDLINE | ID: mdl-32079045

ABSTRACT

The use of paper-based devices in combination with noninstrumental detection systems is becoming increasingly important in the analytical field due to its simplicity, rapidity, and low cost. However, their use for determination of volatile analyte derivatives is still relatively scarce. The present work reports on the assessment of a paper-based gas-sensing approach for the simultaneous noninstrumental colorimetric detection of nitrite and sulfide. Colorimetric systems based on the Griess and methylene blue assays, formation of colored metallic sulfides, and interaction/reaction with in situ generated metallic nanoparticles were preliminary evaluated. Then, the effect of experimental variables affecting the analytical performance of the paper-based gas sensor was studied with two digitization systems, namely a scanner and a smartphone. Under optimal conditions, the developed system yielded limits of detection of 0.055 and 0.005 mg/L for nitrite and sulfide, respectively. The repeatability, expressed as relative standard deviation, was found to be 5.9 and 6.7% for nitrite and sulfide, respectively. The proposed method was finally applied to the analysis of water samples, showing recoveries in the range of 95-105%.

12.
Talanta ; 208: 120365, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31816784

ABSTRACT

The present work reports on the combination of paper-based analytical devices (PADs) and information technology (IT) equipment for non-instrumental determination of boron. PADs prepared with curcumin as a receptor and ethanolic extracts of Curcuma longa L. powder were evaluated for sensing. The colorimetric assay is based on a two step-strategy involving initially the formation of rosocyanin in the PAD under acidic conditions, with subsequent color change (from red to blue-green) at alkaline pH. The color change produced in the PAD is then exploited for determination of boron by digitization and image processing with IT devices (scanner and tablet camera) and an image analysis program, respectively. Under optimal conditions, the proposed assay showed limits of detection in the range 0.2-0.8 mg/L depending on the PADs and IT devices used for colorimetric reaction and digitization, respectively. In addition, the repeatability, expressed as relative standard deviation, was found to be below 5% (5 mg/L, N = 10). PADs prepared with curcumin and ethanolic extracts of Curcuma longa L. powder showed excellent lifetime and successful applicability to the analysis of water samples of different complexity with recoveries in the range 93-105%.

13.
Talanta ; 199: 449-456, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30952282

ABSTRACT

Ultrasound-assisted co-precipitation was applied to construct a magnetic nanocomposite following a 'one-pot' synthetic strategy for Hg(II) enrichment. The presence of a noble metal such as Ag(I), Au(III), Pd(II) in the synthesis medium proved to be essential in order to attain an efficient co-precipitation of Hg with the magnetic nanoparticles. Following this preconcentration procedure, thermal desorption and a further preconcentration was carried out by amalgamation onto a gold coil placed inside a direct mercury analyzer working under the principle of atomic absorption. The magnetic nanocomposite was characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy coupled to energy dispersive X-ray spectrometry (HR-TEM-EDS) and total reflection X-ray fluorescence (TXRF). Magnetic nanoparticles with a size in the range of ca. 7-11 nm were obtained. After full optimization of variables influencing the preconcentration and detection of Hg, analytical characteristics were obtained. A detection limit as low as 3.2 ng/L Hg was obtained when 50 µL of the magnetic phase were introduced in the mercury analyzer. The repeatability and reproducibility expressed as relative standard deviation (RSD) were 7% and 10%, respectively. Several certified reference materials, synthetic and unknown water samples were analyzed showing Hg recoveries in the range of 88-115%.

14.
Talanta ; 193: 176-183, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30368288

ABSTRACT

A novel method for AuNPs/total Au speciation based on the combination of magnetic solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) is described. Ascorbic acid enabled the quantitative extraction of both AuNPs and Au(III) by naked Fe3O4NPs, whereas a selective extraction of AuNPs was achieved in the presence of sodium thiosulfate. Experimental parameters influencing the extraction of both AuNPs and total Au, namely Fe3O4NPs mass, L-ascorbic acid concentration, pH, extraction time, sample volume, Na2S2O3 concentration and re-dispersion volume of magnetic solid phase prior to introduction in the graphite tube, were evaluated. Under optimal conditions, the proposed method yielded detection limits of 19.5 and 19.7 ng L-1 for AuNPs and Au(III), respectively. Intraday repeatability and inter-day reproducibility were lower than 5.3% (N = 6) and 7.6% (N = 4) for both species, respectively. Enrichment factors over 196, corresponding to extraction efficiencies higher than 98%, were obtained for both species. Remarkably, non-significant differences in the extraction of AuNPs over a wide range of AuNPs sizes and morphologies with different capping agents were observed. The reported method was applied to the analysis of superficial waters, groundwater, seawater and artificial wastewater with good recoveries. The method represents a suitable alternative to other reported methodologies for AuNPs quantification in environmental waters at (ultra)trace levels.

15.
Mikrochim Acta ; 185(4): 221, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29594736

ABSTRACT

This work reports on the implementation of gold nanorods (AuNRs) in headspace solvent microextraction for colorimetric determination of volatile analyte derivatives in a single drop. The exposure of AuNRs to both H2Se and elemental mercury (Hg0) results in a shift of the longitudinal plasmonic band, unlike a number of volatiles. Accordingly, a method is reported for the determination of Hg0 with potential applicability to the determination of thiomersal (sodium ethylmercurithiosalicylate). It is based on the photochemical decomposition of thiomersal into Hg(II) and subsequent exposure of AuNRs-containing microdrop to in situ generated Hg0. Colorimetric analysis of the enriched drop was carried out without dilution by means of a cuvetteless microvolume UV-vis spectrometer. Under optimal conditions, the limit of detection was 0.5 ng mL-1 (as Hg). The repeatability, expressed as relative standard deviation, was 8.4% (for n = 10). AuNRs exposed to increasing concentrations of the analyte were characterized by means of transmission electron microscopy and UV-vis spectrophotometry to ascertain the mechanism of detection. The method was finally applied to the determination of thiomersal in various pharmaceutical samples and showed quantitative recoveries. Graphical abstract Schematic illustration of a miniaturized colorimetric method based on the use of a microdrop of gold nanorods (AuNRs) for thiomersal determination in pharmaceuticals. It is based on the photochemical decomposition of thiomersal and subsequent Hg0 generation with in-drop amalgamation.

16.
Anal Chim Acta ; 1011: 1-10, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29475479

ABSTRACT

A rapid, simple and affordable method for arsenic speciation analysis is described in this work. The proposed methodology involves in situ arsine generation, transfer of the volatile to the headspace and its reaction with silver nitrate at the detection zone of a paper-based analytical device (PAD). Thus, silver nitrate acts as a recognition element for arsine in the paper-based sensor. The chemical reaction between the recognition element and the analyte derivative results in the formation of a colored product which can be detected by scanning the detection zone and data treatment with an image processing and analysis program. Detection and injection zones were defined in the paper substrate by formation of hydrophobic barriers, thus enabling the formation of the volatile derivative without affecting the chemical stability of the recognition element present in the PAD. Experimental parameters influencing the analytical performance of the methodology, namely color mode detection, composition of the paper-based sensor and hydride generation and mass transfer conditions, were evaluated. Under optimal conditions, the proposed method showed limits of detection and quantification of 1.1 and 3.6 ng mL-1, respectively. Remarkably, the limit of detection of the method reported herein was much lower than the maximum contaminant levels set by both the World Health Organization and the US Environmental Protection Agency for arsenic in drinking water, unlike several commercially available arsenic test kits. The repeatability, expressed as relative standard deviation, was found to be 7.1% (n = 8). The method was validated against the European Reference Material ERM®-CA615 groundwater and successfully applied to the determination of As(III), As(V) and total inorganic As in different water samples. Furthermore, the method can be used for the screening analysis of total arsenic in waters when a cut-off level of 7 ng mL-1 is used.

17.
Talanta ; 170: 9-14, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28501219

ABSTRACT

This work reports on the development of a novel methodology for bromide determination by combining headspace single-drop microextraction with microvolume fluorospectrometry. The method lies in the in situ generation of bromine, transfer of the volatile to the headspace and trapping/reaction onto a fluorescein-containing aqueous drop exposed to the gas phase. The decrease in the fluorescence intensity enabled the determination of bromide without dilution of the enriched microdrop. Experimental parameters influencing the performance of the method, namely, fluorescence parameters, extractant phase composition, bromine generation conditions and microextraction time, were evaluated and controlled. Under optimal conditions, an enrichment factor of 243 was attained. The limits of detection and quantification achieved under optimal conditions for bromide were found to be 1.4 and 4.4µgL-1, respectively. The intra-day repeatability, expressed as relative standard deviation, was 4.4% (n=6). Besides, the inter-day reproducibility, performed at four different days, was 7.1%. Finally, the developed method was successfully applied to the determination of bromide in different water samples, showing recovery values in the range of 95-110%, and validated against certified reference material BCR-611 (ground water, Br- low level). The proposed method represents a highly convenient approach for monitoring of bromide at very low concentrations.

18.
Anal Chim Acta ; 936: 12-39, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27566338

ABSTRACT

An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

19.
Talanta ; 147: 390-6, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26592623

ABSTRACT

This work describes a fast and simple assay for in situ detection of thiocyanate, i.e., a biomarker of tobacco smoke exposure, in human saliva. The assay is based on the formation of an iron(III)-thiocyanate colored complex in a paper-based sensing platform and subsequent image analysis using a scanner as detection device. Experimental parameters influencing the color intensity of the complex were fully evaluated, including the selection of detection conditions, type of paper substrate, test zone dimensions and composition as well as the stability of the paper-based device. Under optimal conditions, the detection limit was 0.06mM of thiocyanate, and the repeatability, expressed as relative standard deviation, was 3%. The proposed method, characterized by its simplicity, portability and low sample consumption, was applied to the detection of thiocyanate in a series of human saliva samples. Average thiocyanate levels in the ranges 0.28-0.87mM and 0.78-4.28mM were found for non-smokers and smokers, respectively. Recovery studies were carried out at two concentration levels, showing recovery values in the range of 96.1-103.6%.


Subject(s)
Clinical Chemistry Tests/instrumentation , Environmental Exposure/analysis , Nicotiana/chemistry , Paper , Saliva/chemistry , Smoke/analysis , Thiocyanates/analysis , Adult , Aged , Biomarkers/analysis , Female , Humans , Male , Middle Aged , Young Adult
20.
Talanta ; 144: 1308-15, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26452963

ABSTRACT

A new synthesis approach for obtaining fluorescent carbon dots (CDs) based on UV irradiation of carbohydrates was developed. The photochemical synthesis pathway allows the formation of water soluble CDs of analytical usefulness within one min. CDs obtained by photochemical treatment from the sucrose/NaOH/poly(ethylene glycol) system are monodisperse with an average size of 8 nm as determined by transmission electron microscopy. A dramatic increase in the CDs fluorescence (turn on) is observed when H2O2 is added. The decrease in CDs size occurring by the action of highly oxidant OH radicals gives rise to confinement of emissive energy traps and, in turn, to fluorescence enhancement. Antioxidants such as ascorbic acid and glutathione inhibit the photochemical reaction giving rise to a decrease in fluorescence of the CDs/H2O2 system (turn on-off). The detection limit was 5 µM H2O2 and the repeatability expressed as the relative standard deviation was 3.8% (N=7). The photochemical synthesis of CDs allows building a green, low-cost, safe and fast assay for the detection of H2O2 and antioxidants. An application of the novel fluorescent nanoprobe to H2O2 detection in contact lens cleaning solutions is performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...