Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1169109, 2023.
Article in English | MEDLINE | ID: mdl-37234922

ABSTRACT

Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.

2.
Nucleic Acids Res ; 50(W1): W222-W227, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35524565

ABSTRACT

Estimating the functional effect of single amino acid variants in proteins is fundamental for predicting the change in the thermodynamic stability, measured as the difference in the Gibbs free energy of unfolding, between the wild-type and the variant protein (ΔΔG). Here, we present the web-server of the DDGun method, which was previously developed for the ΔΔG prediction upon amino acid variants. DDGun is an untrained method based on basic features derived from evolutionary information. It is antisymmetric, as it predicts opposite ΔΔG values for direct (A → B) and reverse (B → A) single and multiple site variants. DDGun is available in two versions, one based on only sequence information and the other one based on sequence and structure information. Despite being untrained, DDGun reaches prediction performances comparable to those of trained methods. Here we make DDGun available as a web server. For the web server version, we updated the protein sequence database used for the computation of the evolutionary features, and we compiled two new data sets of protein variants to do a blind test of its performances. On these blind data sets of single and multiple site variants, DDGun confirms its prediction performance, reaching an average correlation coefficient between experimental and predicted ΔΔG of 0.45 and 0.49 for the sequence-based and structure-based versions, respectively. Besides being used for the prediction of ΔΔG, we suggest that DDGun should be adopted as a benchmark method to assess the predictive capabilities of newly developed methods. Releasing DDGun as a web-server, stand-alone program and docker image will facilitate the necessary process of method comparison to improve ΔΔG prediction.


Subject(s)
Amino Acids , Protein Stability , Proteins , Amino Acids/genetics , Computers , Databases, Protein , Proteins/genetics , Proteins/chemistry
3.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35021190

ABSTRACT

Predicting the difference in thermodynamic stability between protein variants is crucial for protein design and understanding the genotype-phenotype relationships. So far, several computational tools have been created to address this task. Nevertheless, most of them have been trained or optimized on the same and 'all' available data, making a fair comparison unfeasible. Here, we introduce a novel dataset, collected and manually cleaned from the latest version of the ThermoMutDB database, consisting of 669 variants not included in the most widely used training datasets. The prediction performance and the ability to satisfy the antisymmetry property by considering both direct and reverse variants were evaluated across 21 different tools. The Pearson correlations of the tested tools were in the ranges of 0.21-0.5 and 0-0.45 for the direct and reverse variants, respectively. When both direct and reverse variants are considered, the antisymmetric methods perform better achieving a Pearson correlation in the range of 0.51-0.62. The tested methods seem relatively insensitive to the physiological conditions, performing well also on the variants measured with more extreme pH and temperature values. A common issue with all the tested methods is the compression of the $\Delta \Delta G$ predictions toward zero. Furthermore, the thermodynamic stability of the most significantly stabilizing variants was found to be more challenging to predict. This study is the most extensive comparisons of prediction methods using an entirely novel set of variants never tested before.


Subject(s)
Point Mutation , Proteins , Mutation , Protein Stability , Proteins/chemistry , Thermodynamics
4.
Front Mol Biosci ; 9: 1075570, 2022.
Article in English | MEDLINE | ID: mdl-36685278

ABSTRACT

An open challenge of computational and experimental biology is understanding the impact of non-synonymous DNA variations on protein function and, subsequently, human health. The effects of these variants on protein stability can be measured as the difference in the free energy of unfolding (ΔΔG) between the mutated structure of the protein and its wild-type form. Throughout the years, bioinformaticians have developed a wide variety of tools and approaches to predict the ΔΔG. Although the performance of these tools is highly variable, overall they are less accurate in predicting ΔΔG stabilizing variations rather than the destabilizing ones. Here, we analyze the possible reasons for this difference by focusing on the relationship between experimentally-measured ΔΔG and seven protein properties on three widely-used datasets (S2648, VariBench, Ssym) and a recently introduced one (S669). These properties include protein structural information, different physical properties and statistical potentials. We found that two highly used input features, i.e., hydrophobicity and the Blosum62 substitution matrix, show a performance close to random choice when trying to separate stabilizing variants from either neutral or destabilizing ones. We then speculate that, since destabilizing variations are the most abundant class in the available datasets, the overall performance of the methods is higher when including features that improve the prediction for the destabilizing variants at the expense of the stabilizing ones. These findings highlight the need of designing predictive methods able to exploit also input features highly correlated with the stabilizing variants. New tools should also be tested on a not-artificially balanced dataset, reporting the performance on all the three classes (i.e., stabilizing, neutral and destabilizing variants) and not only the overall results.

5.
Front Genet ; 13: 1049501, 2022.
Article in English | MEDLINE | ID: mdl-36685831

ABSTRACT

The high cosine similarity between some single-base substitution mutational signatures and their characteristic flat profiles could suggest the presence of overfitting and mathematical artefacts. The newest version (v3.3) of the signature database available in the Catalogue Of Somatic Mutations In Cancer (COSMIC) provides a collection of 79 mutational signatures, which has more than doubled with respect to previous version (30 profiles available in COSMIC signatures v2), making more critical the associations between signatures and specific mutagenic processes. This study both provides a systematic assessment of the de novo extraction task through simulation scenarios based on the latest version of the COSMIC signatures and highlights, through a novel approach using archetypal analysis, which COSMIC signatures are redundant and more likely to be considered as mathematical artefacts. 29 archetypes were able to reconstruct the profile of all the COSMIC signatures with cosine similarity > 0.8. Interestingly, these archetypes tend to group similar original signatures sharing either the same aetiology or similar biological processes. We believe that these findings will be useful to encourage the development of new de novo extraction methods avoiding the redundancy of information among the signatures while preserving the biological interpretation.

6.
Genes (Basel) ; 12(6)2021 06 12.
Article in English | MEDLINE | ID: mdl-34204764

ABSTRACT

Several studies have linked disruptions of protein stability and its normal functions to disease. Therefore, during the last few decades, many tools have been developed to predict the free energy changes upon protein residue variations. Most of these methods require both sequence and structure information to obtain reliable predictions. However, the lower number of protein structures available with respect to their sequences, due to experimental issues, drastically limits the application of these tools. In addition, current methodologies ignore the antisymmetric property characterizing the thermodynamics of the protein stability: a variation from wild-type to a mutated form of the protein structure (XW→XM) and its reverse process (XM→XW) must have opposite values of the free energy difference (ΔΔGWM=-ΔΔGMW). Here we propose ACDC-NN-Seq, a deep neural network system that exploits the sequence information and is able to incorporate into its architecture the antisymmetry property. To our knowledge, this is the first convolutional neural network to predict protein stability changes relying solely on the protein sequence. We show that ACDC-NN-Seq compares favorably with the existing sequence-based methods.


Subject(s)
Deep Learning , Genetic Variation , Protein Stability , Sequence Analysis, Protein/methods , Amino Acid Substitution , Humans , Molecular Dynamics Simulation
7.
Front Mol Biosci ; 8: 620793, 2021.
Article in English | MEDLINE | ID: mdl-33598480

ABSTRACT

Missense variants are among the most studied genome modifications as disease biomarkers. It has been shown that the "perturbation" of the protein stability upon a missense variant (in terms of absolute ΔΔG value, i.e., |ΔΔG|) has a significant, but not predictive, correlation with the pathogenicity of that variant. However, here we show that this correlation becomes significantly amplified in haploinsufficient genes. Moreover, the enrichment of pathogenic variants increases at the increasing protein stability perturbation value. These findings suggest that protein stability perturbation might be considered as a potential cofactor in diseases associated with haploinsufficient genes reporting missense variants.

8.
Bioinformatics ; 36(24): 5709-5711, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33492342

ABSTRACT

SUMMARY: Identifying pathogenic variants and annotating them is a major challenge in human genetics, especially for the non-coding ones. Several tools have been developed and used to predict the functional effect of genetic variants. However, the calibration assessment of the predictions has received little attention. Calibration refers to the idea that if a model predicts a group of variants to be pathogenic with a probability P, it is expected that the same fraction P of true positive is found in the observed set. For instance, a well-calibrated classifier should label the variants such that among the ones to which it gave a probability value close to 0.7, approximately 70% actually belong to the pathogenic class. Poorly calibrated algorithms can be misleading and potentially harmful for clinical decision making. AVALIABILITY AND IMPLEMENTATION: The dataset used for testing the methods is available through the DOI:10.5281/zenodo.4448197. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Bioinform Biol Insights ; 13: 1177932219871263, 2019.
Article in English | MEDLINE | ID: mdl-31488948

ABSTRACT

Predictions are fundamental in science as they allow to test and falsify theories. Predictions are ubiquitous in bioinformatics and also help when no first principles are available. Predictions can be distinguished between classifications (when we associate a label to a given input) or regression (when a real value is assigned). Different scores are used to assess the performance of regression predictors; the most widely adopted include the mean square error, the Pearson correlation (ρ), and the coefficient of determination (or R 2 ). The common conception related to the last 2 indices is that the theoretical upper bound is 1; however, their upper bounds depend both on the experimental uncertainty and the distribution of target variables. A narrow distribution of the target variable may induce a low upper bound. The knowledge of the theoretical upper bounds also has 2 practical applications: (1) comparing different predictors tested on different data sets may lead to wrong ranking and (2) performances higher than the theoretical upper bounds indicate overtraining and improper usage of the learning data sets. Here, we derive the upper bound for the coefficient of determination showing that it is lower than that of the square of the Pearson correlation. We provide analytical equations for both indices that can be used to evaluate the upper bound of the predictions when the experimental uncertainty and the target distribution are available. Our considerations are general and applicable to all regression predictors.

SELECTION OF CITATIONS
SEARCH DETAIL
...