Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(11): eadi7598, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489363

ABSTRACT

Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently, nonlinear THz third-harmonic generation (THG) was shown to directly probe the collective degrees of freedoms of the superconducting condensate, including the Higgs mode. Here, we extend this idea to light-driven nonequilibrium states in superconducting La2-xSrxCuO4, establishing an optical pump-THz-THG drive protocol to access the transient superconducting order-parameter quench and recovering on few-picosecond timescales. We show in particular the ability of two-dimensional TH spectroscopy to disentangle the effects of optically excited quasiparticles from the pure order-parameter dynamics, which are unavoidably mixed in the pump-driven linear THz response. Benchmarking the gap dynamics to existing experiments shows the ability of driven THG spectroscopy to overcome these limitations in ordinary pump-probe protocols.

7.
Faraday Discuss ; 237(0): 168-185, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35642718

ABSTRACT

Recent experiments with strong THz fields in unconventional cuprate superconductors have clearly evidenced an increase of the non-linear optical response below the superconducting critical temperature Tc. As in the case of conventional superconductors, a theoretical estimate of the various effects contributing to the non-linear response is needed in order to interpret the experimental findings. Here, we report a detailed quantitative analysis of the non-linear THz optical kernel in cuprates within a realistic model, accounting for the band structure and disorder level appropriate for these systems. We show that the BCS quasiparticle response is the dominant contribution for cuprates, and its polarization dependence accounts very well for the third-harmonic generation measurements. On the other hand, the polarization dependence of the THz Kerr effect is only partly captured by our calculations, suggesting the presence of additional effects when the system is probed using light pulses with different central frequencies.

8.
Nat Commun ; 12(1): 752, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531492

ABSTRACT

The hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.

9.
Phys Rev Lett ; 124(19): 197602, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469539

ABSTRACT

Raman experiments on bulk FeSe revealed that the low-frequency part of the B_{1g} Raman response R_{B1g}(Ω), which probes nematic fluctuations, rapidly decreases below the nematic transition at T_{n}∼85 K. Such behavior is expected when a gap opens up and at a first glance is inconsistent with the fact that FeSe remains a metal below T_{n}. We argue that the drop of R_{B1g}(Ω) can be ascribed to the fact that the nematic order drastically changes the orbital content of low-energy excitations near hole and electron pockets, making them nearly mono-orbital. In this situation, the B_{1g} Raman response gets reduced by the same vertex corrections that enforce charge conservation in the symmetric Raman channel. The reduction holds at low frequencies and gives rise to gaplike behavior of R_{B1g}(Ω). We also show that the enhancement of the B_{1g} Raman response near T_{n} is consistent with the sign change of the nematic order parameter between hole and electron pockets.

10.
Phys Rev Lett ; 122(4): 047001, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768342

ABSTRACT

The hexatic fluid refers to a phase in between a solid and a liquid that has short-range positional order but quasi-long-range orientational order. In the celebrated theory of Berezinskii, Kosterlitz, and Thouless and subsequently refined by Halperin, Nelson, and Young, it was predicted that a two-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid, which retains quasi-long-range orientational order; and then from a hexatic fluid to an isotropic liquid. In this Letter, using a combination of real space imaging and transport measurements, we show that the two-dimensional vortex lattice in an a-MoGe thin film follows this sequence of melting as the magnetic field is increased. Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we construct a vortex phase diagram for a two-dimensional superconductor.

11.
Phys Rev Lett ; 116(16): 166602, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152815

ABSTRACT

We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy associated with spin-orbit coupling, dc transport is accurately described by a standard Drude's law, due to a nontrivial compensation between the suppression of backscattering and the relativistic correction to the quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime, Drude's paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of freedom in these systems.

12.
Sci Rep ; 3: 1357, 2013.
Article in English | MEDLINE | ID: mdl-23446946

ABSTRACT

The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor.

13.
Phys Rev Lett ; 108(15): 156801, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22587273

ABSTRACT

The in-plane optical phonons around 200 meV in few-layer graphene are investigated utilizing infrared absorption spectroscopy. The phonon spectra exhibit unusual asymmetric features characteristic of Fano resonances, which depend critically on the layer thickness and stacking order of the sample. The phonon intensities in samples with rhombohedral (ABC) stacking are significantly higher than those with Bernal (AB) stacking. These observations reflect the strong coupling between phonons and interband electronic transitions in these systems and the distinctive variation in the joint density of electronic states in samples of differing thickness and stacking order.

SELECTION OF CITATIONS
SEARCH DETAIL
...