Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Oncoimmunology ; 12(1): 2238506, 2023.
Article in English | MEDLINE | ID: mdl-37485033

ABSTRACT

Approximately 20% of locally advanced rectal cancer (LARC) patients treated preoperatively with chemoradiotherapy (CRT) achieve pathologically confirmed complete regression. However, there are no clinically implemented biomarkers measurable in biopsies that are predictive of tumor regression. Here, we conducted multiplexed immunophenotyping of rectal cancer diagnostic biopsies from 16 LARC patients treated preoperatively with CRT. We identified that patients with greater tumor regression had higher tumor infiltration of pan-T cells and IRF8+HLA-DR+ cells prior to CRT. High IRF8+HLA-DR+ cell density was further associated with prolonged disease-specific survival with 83% survival at 5 y compared to 28% in patients with low infiltration. Contrastingly, low CD11c+ myeloid cell infiltration prior to CRT was a putative biomarker associated with longer 3- and 5-y disease-free survival. The results demonstrate the potential use of rectal cancer diagnostic biopsies to measure IRF8+ HLA-DR+ cells as predictors of CRT-induced tumor regression and CD11c+ myeloid cells as predictors of LARC patient survival.


Subject(s)
CD11c Antigen , Interferon Regulatory Factors , Rectal Neoplasms , T-Lymphocytes , Humans , Biomarkers/analysis , Biopsy , Cell Count , Interferon Regulatory Factors/immunology , Neoadjuvant Therapy , Rectal Neoplasms/diagnosis , Rectal Neoplasms/immunology , Rectal Neoplasms/therapy , Treatment Outcome , Predictive Value of Tests , Male , Female , Middle Aged , Aged , CD11c Antigen/immunology , T-Lymphocytes/immunology
2.
J Anim Ecol ; 92(9): 1759-1770, 2023 09.
Article in English | MEDLINE | ID: mdl-37438871

ABSTRACT

Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.


El cambio climático representa una grave amenaza para muchos taxones, con un aumento de las temperaturas medias y la frecuencia de eventos climáticos extremos pronosticados. Los insectos pueden responder a las altas temperaturas mediante comportamientos, como inclinar sus alas fuera del alcance del sol o buscar microclimas frescos locales para termorregular, o a través de la tolerancia fisiológica. En una comunidad de mariposas en Panamá, comparamos la capacidad de las mariposas adultas de 54 especies para controlar su temperatura corporal en un rango de temperaturas del aire (capacidad de amortiguación térmica), así como evaluar el máximo térmico crítico para un subconjunto de 24 especies. La capacidad de amortiguación térmica y la tolerancia se influenciaron por la familia, la longitud del ala y el colour del ala; con Pieridae y mariposas grandes o de colour más oscuro teniendo la capacidad de amortiguación térmica más fuerte, pero Hesperiidae, mariposas pequeñas y de colour más oscuro tolerando las temperaturas más altas. Identificamos una relación entre la capacidad de amortiguación térmica y la tolerancia fisiológica, en la que las especies con mayores capacidades de amortiguación térmica tenían una menor tolerancia térmica, y viceversa. Esta interacción implica que las especies con temperaturas corporales más estables en el campo pueden ser más vulnerables a los aumentos en las temperaturas ambientales, por ejemplo, las olas de calor asociadas con el cambio climático actual. Nuestra investigación demuestra que las especies tropicales emplean diversas estrategias de termorregulación, las cuales también se reflejan en su sensibilidad a las temperaturas extremas.


Subject(s)
Butterflies , Animals , Butterflies/physiology , Temperature , Hot Temperature , Cold Temperature , Body Temperature Regulation , Climate Change
3.
Glob Chang Biol ; 29(15): 4180-4192, 2023 08.
Article in English | MEDLINE | ID: mdl-37315654

ABSTRACT

Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.


El calentamiento global es una gran amenaza para las especies alrededor del mundo, sin embargo, no se tiene bien definido sí en los insectos, las especies distribuídas en las zonas tropicales son más vulnerables a los cambios de temperature que las especies de zonas templadas o viceversa. Para responder a este interrogante, utilizamos un protocolo de campo estandarizado aplicado a especies de mariposas distribuídas en zonas tropicales (Panamá) versus zonas templadas (Reino Unido, República Checa y Austria), con el cual buscamos: (1) Evaluar la capacidad de amortiguación (capacidad de regular la temperatura corporal en relación con la temperatura del aire circundante) en el a nivel de ensamblaje y familia, (2) Determinar sí las diferencias en la capacidad de amortiguación es facilitada por sus características morfológicas, y (3) Investigar cómo las mariposas usan los microclimas y el comportamiento para termorregularse a tráves de mediciones de temperatura ecológicamente relevantes. Nuestra hipotesis incial soportaba que las mariposas templadas estaban adaptadas para amortiguar los cambios de temperatura en comparación con las mariposas neotropicales, ya que las especies templadas experimentan un rango más amplio de temperaturas que sus contrapartes tropicales. Contrariamente a nuestra hipótesis, a nivel de ensamble, las especies neotropicales (especialmente familia Nymphalidae) fueron mejores en la capaicidad de amortiguacion que las especies templadas, explicado por el hecho de que individuos se enfrían más a altas temperaturas del aire. Así, la morfología fué el principal impulsor de las diferencias en la capacidad de amortiguación entre las especies neotropicales y templadas en comparación con el ambiente térmico experimentado por las mismas. Encontramos que las mariposas templadas utilizaron la termorregulación de postura para elevar su temperatura corporal más que las mariposas neotropicales, probablemente como una adaptación a los climas templados, aunque la selección de microclimas no difirió entre regiones. Nuestros hallazgos demuestran que las especies de mariposas tienen estrategias de termorregulación únicas, impulsadas principalmente por el comportamiento y morfología, además nuestros resultados demuestran que a diferencia de lo que se ha pensado, las especies neotropicales son igual de vulnerables al calentamiento de su hábitat que las especies templadas.


Subject(s)
Butterflies , Humans , Animals , Butterflies/physiology , Body Temperature Regulation , Hot Temperature , Temperature , Cold Temperature
4.
Metabolites ; 12(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36144183

ABSTRACT

Human saliva offers many advantages over other biofluids regarding its use and value as a bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly because its collection is largely non-invasive, is relatively cheap, and does not require any major clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such purposes, including the identification, validation and quantification of surrogate biomarkers, may easily self-collect such samples in their homes following the provision of full collection details to them by researchers. In this report, the authors have focused on the applications of metabolomics technologies to the diagnosis and progressive severity monitoring of human cancer conditions, firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic) cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length of storage and preparation for analysis. Moreover, recommended protocols for the optimisation of NMR pulse sequences for analysis, along with the application of methods and techniques for verifying and resonance assignments and validating the quantification of biomolecules responsible, are critically considered. In view of the authors' specialisms and research interests, the majority of these investigations were conducted using NMR-based metabolomics techniques. The extension of these studies to determinations of metabolic pathways which have been pathologically disturbed in these diseases is also assessed here and reviewed. Where available, data for the monitoring of patients' responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic potential of 1H NMR-detectable salivary 'acute-phase' glycoprotein carbohydrate side chains, and/or their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.

5.
Cancers (Basel) ; 14(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35740599

ABSTRACT

Early T stage colorectal cancers (CRC) that invade lymph nodes (Stage IIIA) are rare and greatly under-represented in large-scale genomic mapping projects. We retrieved 10 Stage IIIA CRC cases, matched these to 16 Stage 1 CRC cases (T1 depth without lymph node metastasis) and carried out deep sequencing of 409 genes using the IonTorrent system. Tumour mutational burdens (TMB) ranged from 2.4 to 77.2/Mb sequenced. No stage-related mutational differences were observed, consistent with reanalysis of The Cancer Genome Atlas (TCGA) Stage I and IIIA datasets. We next examined mutational burdens and observed that the top five cancers were microsatellite stable (MSS) genotypes (mean TMB 49.3/Mb), while the other 16 MSS cancers had a mean TMB of 5.9/Mb. To facilitate comparison with TCGA hypermutator CRC, we included four microsatellite instability-high (MSI-H) samples with the high mutation burden MSS cases to form a TMB-High group. Comparison of TMB-High with TMB-Low groups revealed differences in mutational frequency of ATM, ALK, NSD1, UBR5, BCL9, CARD11, KDM5C, MN1, PTPRT and PIK3CA, with ATM and UBR5 validated in reanalysis of TCGA hypermutator Stages I and IIIA samples. Variants in ATM were restricted to the TMB-High group, and in four of five MSS specimens, we observed the co-occurrence of mutations in homologous recombination repair (HRR) genes in either two of ATM, CDK12, PTEN or ATR, with at least one of these being a likely pathogenic truncating mutation. No MSI-H specimens carried nonsense mutations in HRR genes. These findings add to our knowledge of early T stage CRC and highlight a potential therapeutic vulnerability in the HRR pathway of TMB-H MSS CRC.

6.
Front Immunol ; 13: 1045731, 2022.
Article in English | MEDLINE | ID: mdl-36741361

ABSTRACT

The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.


Subject(s)
Lipidomics , Ultraviolet Rays , Mice , Animals , Ultraviolet Rays/adverse effects , Skin , Platelet Activating Factor/pharmacology , Lymph Nodes
7.
Foods ; 10(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34681530

ABSTRACT

Soybean oil is the second most exported oil from the United States and South America, and is widely marketed as a cooking oil product containing numerous health benefits for human consumers. However, culinary oils with high polyunsaturated fatty acid (PUFA) contents, are known to produce high quantities of lipid oxidation products (LOPs), including toxic aldehydes upon exposure to high-temperature frying episodes. Previous studies have demonstrated causal links between aldehyde ingestion and inhalation with deleterious health perturbations, including mutagenic and carcinogenic effects, along with cardiovascular and teratogenic actions. In this study, aldehydic LOPs were detected and quantified in commercially available samples of soybean, avocado, corn and extra-virgin olive oil products before and after their exposure to laboratory-simulated laboratory frying episodes (LSSFEs) using high-resolution 1H nuclear magnetic resonance (NMR) analysis. Results acquired demonstrated that PUFA-rich soybean and corn oils gave rise to the highest concentrations of oil aldehydes from the thermo-oxidation of unsaturated fatty acids, whereas monounsaturated fatty acid (MUFA)-laden avocado and olive oils were much more resistant to this peroxidation process, as expected. Multivariate chemometrics analyses provided evidence that an orthogonal component pattern of aldehydic LOPs featuring low-molecular-mass n-alkanals such as propanal, and 4-oxo-alkanals, arises from thermo-oxidation of the ω-3 fatty acid (FA) linolenic acid (present in soybean oils at levels of ca. 7% (w/w)), was able to at least partially distinguish this oil from corresponding samples of thermally-stressed corn oil. Despite having a similar total PUFA level, corn oil has only a negligible ω-3 FA content, and therefore generated significantly lower levels of these two aldehyde classes. In view of the adverse health effects associated with dietary LOP ingestion, alternative methodologies for the incorporation of soybean oils within high-temperature frying practices are proposed.

8.
J Immunol ; 207(9): 2278-2287, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34561229

ABSTRACT

Systemic suppression of adaptive immune responses is a major way in which UV radiation contributes to skin cancer development. Immune suppression is also likely to explain how UV protects from some autoimmune diseases, such as multiple sclerosis. However, the mechanisms underlying UV-mediated systemic immune suppression are not well understood. Exposure of C57BL/6 mice to doses of UV known to suppress systemic autoimmunity led to the accumulation of cells within the skin-draining lymph nodes and away from non-skin-draining lymph nodes. Transfer of CD45.1+ cells from nonirradiated donors into CD45.2+ UV-irradiated recipients resulted in preferential accumulation of donor naive T cells and a decrease in activated T cells within skin-draining lymph nodes. A single dose of immune-suppressive UV was all that was required to cause a redistribution of naive and central memory T cells from peripheral blood to the skin-draining lymph nodes. Specifically, CD69-independent increases in sphingosine-1-phosphate (S1P) receptor 1-negative naive and central memory T cells occurred in these lymph nodes. Mass spectrometry analysis showed UV-mediated activation of sphingosine kinase 1 activity, resulting in an increase in S1P levels within the lymph nodes. Topical application of a sphingosine kinase inhibitor on the skin prior to UV irradiation eliminated the UV-induced increase in lymph node S1P and T cell numbers. Thus, exposure to immunosuppressive UV disrupts T cell recirculation by manipulating the S1P pathway.


Subject(s)
Lymph Nodes/immunology , Multiple Sclerosis/radiotherapy , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Skin/pathology , Animals , Blood Circulation , Cells, Cultured , Humans , Immunologic Memory , Immunosuppression Therapy , Lymphocyte Activation , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Skin/radiation effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Ultraviolet Rays , Ultraviolet Therapy
9.
Cancers (Basel) ; 13(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298598

ABSTRACT

Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium, known as polyps. Polyps themselves arise through the accumulation of mutations that disrupt the function of key tumour suppressor genes, activate proto-oncogenes and allow proliferation in an environment where immune control has been compromised. Consequently, colonoscopic surveillance and polypectomy are central pillars of cancer control strategies. Recent advances in genomic sequencing technologies have enhanced our knowledge of key driver mutations in polyp lesions that likely contribute to CRC. In accordance with the prognostic significance of Immunoscores for CRC survival, there is also a likely role for early immunological changes in polyps, including an increase in regulatory T cells and a decrease in mature dendritic cell numbers. Gut microbiotas are under increasing research interest for their potential contribution to CRC evolution, and changes in the gut microbiome have been reported from analyses of adenomas. Given that early changes to molecular components of bowel polyps may have a direct impact on cancer development and/or act as indicators of early disease, we review the molecular landscape of colorectal polyps, with an emphasis on immunological and microbial alterations occurring in the gut and propose the potential clinical utility of these data.

10.
Cells ; 10(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33807817

ABSTRACT

Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted proteomic-based studies. In order to identify and establish new, predominantly low-molecular-mass biomarkers for this disorder, we employed an untargeted, multi-analyte approach involving high-resolution 1H NMR analysis coupled to a range of multivariate analysis and computational intelligence technique (CIT) strategies to explore biomolecular distinctions between blood plasma samples collected from GM1T2 and healthy control (HC) participants (n = 10 and 28, respectively). The relationship of these differences to metabolic mechanisms underlying the pathogenesis of GM1T2 disorder was also investigated. 1H NMR-linked metabolomics analyses revealed significant GM1T2-mediated dysregulations in ≥13 blood plasma metabolites (corrected p < 0.04), and these included significant upregulations in 7 amino acids, and downregulations in lipoprotein-associated triacylglycerols and alanine. Indeed, results acquired demonstrated a profound distinctiveness between the GM1T2 and HC profiles. Additionally, employment of a genome-scale network model of human metabolism provided evidence that perturbations to propanoate, ethanol, amino-sugar, aspartate, seleno-amino acid, glutathione and alanine metabolism, fatty acid biosynthesis, and most especially branched-chain amino acid degradation (p = 10-12-10-5) were the most important topologically-highlighted dysregulated pathways contributing towards GM1T2 disease pathology. Quantitative metabolite set enrichment analysis revealed that pathological locations associated with these dysfunctions were in the order fibroblasts > Golgi apparatus > mitochondria > spleen ≈ skeletal muscle ≈ muscle in general. In conclusion, results acquired demonstrated marked metabolic imbalances and alterations to energy demand, which are consistent with GM1T2 disease pathogenesis mechanisms.


Subject(s)
Biomarkers/metabolism , G(M1) Ganglioside/metabolism , Gangliosidosis, GM1/classification , Magnetic Resonance Imaging/methods , Metabolomics/methods , Female , Humans , Male
11.
Diabetes Res Clin Pract ; 171: 108554, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33238175

ABSTRACT

We describe the advantages and diagnostic/prognostic significance of low-field, near-portable benchtop NMR spectrometers for the multicomponent metabolomics analysis of targeted and untargeted urinary biomarkers (≥15) in type 2 diabetes patients. Implementation of these facilities at 'point-of-care' clinical sites may yield valuable advantages for the sequential monitoring of diabetic and prediabetic individuals.


Subject(s)
Diabetes Mellitus, Type 2/urine , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Point-of-Care Systems/standards , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Prognosis
12.
Foods ; 9(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291487

ABSTRACT

Although biogenic amines (BAs) present in fermented foods exert important health-promoting and physiological function support roles, their excessive ingestion can give rise to deleterious toxicological effects. Therefore, here we have screened the BA contents and supporting food quality indices of a series of fermented food products using a multianalyte-chemometrics strategy. A liquid chromatographic triple quadrupole mass spectrometric (LC-MS/MS) technique was utilized for the simultaneous multicomponent analysis of 8 different BAs, and titratable acidity, pH, total lipid content, and thiobarbituric acid-reactive substances (TBARS) values were also determined. Rigorous univariate and multivariate (MV) chemometric data analysis strategies were employed to evaluate results acquired. Almost all foods analyzed had individual and total BA contents that were within recommended limits. The chemometrics methods applied were useful for recognizing characteristic patterns of BA analytes and food quality measures between some fermented food classes, and for assessing their inter-relationships and potential metabolic sources. MV analysis of constant sum-normalized BA profile data demonstrated characteristic signatures for cheese (cadaverine only), fermented cod liver oil (2-phenylethylamine, tyramine, and tryptamine), and wine/vinegar products (putrescine, spermidine, and spermine). In conclusion, this LC-MS/MS-linked chemometrics approach was valuable for (1) contrasting and distinguishing BA catabolite signatures between differing fermented foods, and (2) exploring and evaluating the health benefits and/or possible adverse public health risks of such products.

13.
Photochem Photobiol Sci ; 19(7): 870-878, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32519728

ABSTRACT

Ultraviolet (UV) radiation-mediated immune suppression is a key mechanism conferring both detrimental and beneficial impacts of sun exposure on human health. Suppression of anti-tumour responses promotes the development and progression of UV-induced skin cancers. In contrast, suppression of dysregulated immune responses facilitate the therapeutic success of phototherapy treatment for skin disorders and is postulated to be responsible for UV protection from autoimmune diseases. While some of the molecular and cellular mechanisms underlying UV-suppression of the immune system are known, a relatively unexplored area is immunomodulatory lipids. Cutaneous UV exposure changes lipids both locally in the skin, increasing platelet-activating factor (PAF) production and decreasing free triglyceride levels, and systemically reducing adipose tissue mass. There is growing recognition that bioactive lipids and lipid metabolism directly affect immune cell phenotype and function. Manipulation of immunomodulatory lipid pathways are effective strategies in modifying systemic immune responses. Indeed, the PAF pathway is a key initiator of UV-induced immune suppression and antagonism of PAF-receptors restores immune function and reduces skin cancer development in mice. This review focuses on the known effects of UV on lipids and proposes how this may in turn be involved in the modulation of the immune system.


Subject(s)
Lipids/immunology , Ultraviolet Rays , Adipose Tissue/immunology , Animals , Humans , Lipids/chemistry , Platelet Activating Factor/biosynthesis
14.
Nutrients ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244669

ABSTRACT

Exposure of polyunsaturated fatty acid (PUFA)-rich culinary oils (COs) to high temperature frying practices generates high concentrations of cytotoxic and genotoxic lipid oxidation products (LOPs) via oxygen-fueled, recycling peroxidative bursts. These toxins, including aldehydes and epoxy-fatty acids, readily penetrate into fried foods and hence are available for human consumption; therefore, they may pose substantial health hazards. Although previous reports have claimed health benefits offered by the use of PUFA-laden COs for frying purposes, these may be erroneous in view of their failure to consider the negating adverse public health threats presented by food-transferable LOPs therein. When absorbed from the gastrointestinal (GI) system into the systemic circulation, such LOPs may significantly contribute to enhanced risks of chronic non-communicable diseases (NCDs), e.g. cancer, along with cardiovascular and neurological diseases. Herein, we provide a comprehensive rationale relating to the public health threats posed by the dietary ingestion of LOPs in fried foods. We begin with an introduction to sequential lipid peroxidation processes, describing the noxious effects of LOP toxins generated therefrom. We continue to discuss GI system interactions, the metabolism and biotransformation of primary lipid hydroperoxide LOPs and their secondary products, and the toxicological properties of these agents, prior to providing a narrative on chemically-reactive, secondary aldehydic LOPs available for human ingestion. In view of a range of previous studies focused on their deleterious health effects in animal and cellular model systems, some emphasis is placed on the physiological fate of the more prevalent and toxic α,ß-unsaturated aldehydes. We conclude with a description of targeted nutritional and interventional strategies, whilst highlighting the urgent and unmet clinical need for nutritional and epidemiological trials probing relationships between the incidence of NCDs, and the frequency and estimated quantities of dietary LOP intake.


Subject(s)
Cooking , Dietary Fats, Unsaturated/adverse effects , Fatty Acids, Unsaturated/adverse effects , Fatty Acids, Unsaturated/chemistry , Hot Temperature/adverse effects , Lipid Peroxidation , Mutagens/adverse effects , Public Health , Dietary Fats, Unsaturated/metabolism , Fatty Acids, Unsaturated/metabolism , Food Quality , Gastrointestinal Tract/metabolism , Humans , Intestinal Absorption , Mutagens/metabolism , Noncommunicable Diseases , Nutritional Physiological Phenomena , Risk
15.
Nutrients ; 12(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178350

ABSTRACT

High-resolution 1H nuclear magnetic resonance (NMR) analysis was employed to molecularly screen the lipid, lipid oxidation product (LOP), and antioxidant compositions of four natural (unrefined) cod liver oil (CLO) products. Products 1-3 were non-fermented CLOs, whilst Product 4 was isolated from pre-fermented cod livers. Supporting analytical data that were acquired included biogenic amine, flavanone, tannin, phenolic antioxidant, α-tocopherol, and oxygen radical absorbance capacity (ORAC) determinations by recommended HPLC, LC/MS/MS, or spectrophotometric methods. SDS-PAGE, HPLC, and 1H NMR analyses investigated and determined collagenous antioxidants and their molecular mass ranges. 1H NMR analysis of aldehydic LOPs was employed to explore the susceptibilities/resistivities of each CLO product to peroxidation that is induced by thermal stressing episodes (TSEs) at 180°C, or following prolonged (42 day) storage episodes at 4 and 23 °C. Product 4 displayed extremely high ORAC values, which were much greater than those of Products 1-3, and that were predominantly ascribable to significant levels of peroxidation-blocking and/or aldehyde-consuming collagenous polypeptides/peptides and ammoniacal agents therein. Significantly lower levels of toxic aldehydes were generated in the pre-fermented Product 4 during exposure to TSEs, or the above long-term storage episodes. These results confirmed the enhanced peroxidative resistivity of a fermented, antioxidant-fortified natural CLO product over those of non-fermented unrefined products. Product 4: Green Pasture Blue Ice™ Fermented Cod Liver Oil.


Subject(s)
Antioxidants/analysis , Biogenic Amines/analysis , Cod Liver Oil/analysis , Proton Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry , alpha-Tocopherol/analysis , Oxidation-Reduction
17.
Food Funct ; 10(12): 7952-7966, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31764926

ABSTRACT

High-resolution NMR analysis has been used, for the first time, to identify, putatively, two new secondary aldehydic lipid oxidation products in culinary oils. The impact of heating and cooling times on the thermal stability, fatty acid composition and lipid oxidation product (LOP) concentrations have been analysed for continuous and discontinuous heating periods (180 °C). The susceptibility of the selected oils to thermal oxidation for the different heating episodes has been evaluated via the detection and determination of LOPs, particularly cytotoxic and genotoxic aldehydes. The identities and quantities of these LOPs evolved throughout a 2.0 hour period. Results acquired indicated that sunflower oil was more resistant to discontinuous oxidation than rapeseed and olive oils, however overall discontinuous heating resulted in more LOPs.


Subject(s)
Olive Oil/chemistry , Rapeseed Oil/chemistry , Sunflower Oil/chemistry , Cooking , Hot Temperature , Lipid Peroxidation , Oxidation-Reduction
18.
Sci Rep ; 9(1): 4125, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858398

ABSTRACT

Human ingestion of cytotoxic and genotoxic aldehydes potentially induces deleterious health effects, and high concentrations of these secondary lipid oxidation products (LOPs) are generated in polyunsaturated fatty acid (PUFA)-rich culinary oils during high temperature frying practices. Here, we explored the peroxidative resistance of a novel monounsaturate-rich algae frying oil (MRAFO) during laboratory-simulated shallow- and domestically-based repetitive deep-frying episodes (LSSFEs and DBRDFEs respectively), the latter featuring potato chip fryings. Culinary frying oils underwent LSSFEs at 180 °C, and DBRDFEs at 170 °C: aldehydes were determined by 1H NMR analysis in samples collected at increasing heating/frying time-points. Fast food restaurant-fried potato chip serving (FFRPCS) aldehyde contents were also monitored. Substantially lower levels of aldehydes were generated in the MRAFO product than those observed in PUFA-richer oils during LSSFEs. Toxicologically-significant concentrations of aldehydes were detected in FFRPCSs, and potato chips exposed to DBRDFEs when using a PUFA-laden sunflower oil frying medium: these contents increased with augmented deep-frying episode repetition. FFRPCS aldehyde contents were 10-25 ppm for each class monitored. In conclusion, the MRAFO product generated markedly lower levels of food-penetrative, toxic aldehydes than PUFA-rich ones during LSSFEs. Since FFRPCS and DBRDFE potato chip aldehydes are predominantly frying oil-derived, PUFA-deplete MRAFOs potentially offer health-friendly advantages.


Subject(s)
Aldehydes/analysis , Cooking/methods , Fatty Acids, Monounsaturated/chemistry , Lipid Peroxidation , Plant Oils/chemistry , Aldehydes/toxicity , Dietary Fats/standards , Fatty Acids, Unsaturated/chemistry , Food Analysis , Hot Temperature/adverse effects , Oxidation-Reduction , Plant Oils/classification , Plant Oils/standards
19.
High Throughput ; 8(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591692

ABSTRACT

Novel sensing technologies for liquid biopsies offer promising prospects for the early detection of metabolic conditions through omics techniques. Indeed, high-field nuclear magnetic resonance (NMR) facilities are routinely used for metabolomics investigations on a range of biofluids in order to rapidly recognise unusual metabolic patterns in patients suffering from a range of diseases. However, these techniques are restricted by the prohibitively large size and cost of such facilities, suggesting a possible role for smaller, low-field NMR instruments in biofluid analysis. Herein we describe selected biomolecule validation on a low-field benchtop NMR spectrometer (60 MHz), and present an associated protocol for the analysis of biofluids on compact NMR instruments. We successfully detect common markers of diabetic control at low-to-medium concentrations through optimised experiments, including α-glucose (≤2.8 mmol/L) and acetone (25 µmol/L), and additionally in readily accessible biofluids, particularly human urine. We present a combined protocol for the analysis of these biofluids with low-field NMR spectrometers for metabolomics applications, and offer a perspective on the future of this technique appealing to 'point-of-care' applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...