Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Science ; 384(6695): 563-572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696572

ABSTRACT

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Subject(s)
Aging, Premature , Aging , Brain , Circadian Rhythm , Muscle, Skeletal , Animals , Male , Mice , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Aging, Premature/prevention & control , Brain/physiology , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Homeostasis , Muscle, Skeletal/physiology , Mice, Knockout , ARNTL Transcription Factors/genetics
2.
Cell Stem Cell ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38701785

ABSTRACT

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

3.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189051, 2024 01.
Article in English | MEDLINE | ID: mdl-38101461

ABSTRACT

This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.


Subject(s)
Lipid Metabolism , Neoplasms , Humans , Neoplasms/pathology , Tumor Microenvironment
4.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793502

ABSTRACT

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Chromatography, Liquid , Circadian Clocks/genetics , Circadian Rhythm/genetics , Fibroblast Growth Factor 1/metabolism , Liver/metabolism , Muscles/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
5.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Article in English | MEDLINE | ID: mdl-37563469

ABSTRACT

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Subject(s)
Melanoma , United States , Animals , Mice , Ranolazine/pharmacology , Ranolazine/therapeutic use , Melanoma/drug therapy , Melanoma/metabolism , Immunotherapy , Protein Kinase Inhibitors/pharmacology , Methionine
6.
Cell Rep ; 42(6): 112588, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37267101

ABSTRACT

Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism
7.
Nat Aging ; 3(6): 688-704, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291218

ABSTRACT

Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.


Subject(s)
Interleukin-17 , Skin Aging , Mice , Animals , Interleukin-17/genetics , Immunity, Innate , Lymphocytes , Skin
8.
Ann N Y Acad Sci ; 1523(1): 38-50, 2023 05.
Article in English | MEDLINE | ID: mdl-36960914

ABSTRACT

Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Immune System , Metabolic Networks and Pathways , Obesity/therapy , Obesity/metabolism , Tumor Microenvironment
10.
Nature ; 613(7942): 169-178, 2023 01.
Article in English | MEDLINE | ID: mdl-36544018

ABSTRACT

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Subject(s)
Aging , Cellular Senescence , Inflammation , Muscle, Skeletal , Regeneration , Stem Cell Niche , Aged , Animals , Humans , Mice , Aging/metabolism , Aging/physiology , Cellular Senescence/physiology , Inflammation/metabolism , Inflammation/physiopathology , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Stem Cells/physiology , Fibrosis/physiopathology , Stem Cell Niche/physiology , Transcriptome , Chromatin/genetics , Geroscience
11.
Cell Metab ; 34(11): 1675-1699, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36261043

ABSTRACT

Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Lipid Metabolism , Signal Transduction , Oxidative Stress , Lipids
12.
Nature ; 607(7919): 593-603, 2022 07.
Article in English | MEDLINE | ID: mdl-35768510

ABSTRACT

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Subject(s)
5-Methylcytosine , Cytosine/analogs & derivatives , Glycolysis , Mitochondria , Neoplasm Metastasis , Oxidative Phosphorylation , RNA, Mitochondrial , 5-Methylcytosine/biosynthesis , 5-Methylcytosine/metabolism , CD36 Antigens , Cell Survival , Cytosine/metabolism , Disease Progression , Glycolysis/drug effects , Humans , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Oxidative Phosphorylation/drug effects , Protein Biosynthesis/drug effects , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Met/genetics , RNA, Transfer, Met/metabolism
13.
Sci Adv ; 8(26): eabo2896, 2022 07.
Article in English | MEDLINE | ID: mdl-35767612

ABSTRACT

Life on Earth anticipates recurring 24-hour environmental cycles via genetically encoded molecular clocks active in all mammalian organs. Communication between these clocks controls circadian homeostasis. Intertissue communication is mediated, in part, by temporal coordination of metabolism. Here, we characterize the extent to which clocks in different organs control systemic metabolic rhythms, an area that remains largely unexplored. We analyzed the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. Having functional hepatic and muscle clocks can only drive a minority (13%) of systemic metabolic rhythms. Conversely, limiting Bmal1 expression to the central pacemaker in the brain restores rhythms to 57% of circulatory metabolites. Rhythmic feeding imposed on clockless mice resulted in a similar rescue, indicating that the central clock mainly regulates metabolic rhythms via behavior. These findings explicate the circadian communication between tissues and highlight the importance of the central clock in governing those signals.

14.
Nat Struct Mol Biol ; 29(6): 549-562, 2022 06.
Article in English | MEDLINE | ID: mdl-35606517

ABSTRACT

Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.


Subject(s)
Chromatin , Histones , Period Circadian Proteins/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Circadian Rhythm/physiology , Feedback , Histones/metabolism , Mammals/genetics , Mice , Nucleosomes
15.
Nature ; 599(7885): 485-490, 2021 11.
Article in English | MEDLINE | ID: mdl-34759321

ABSTRACT

Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.


Subject(s)
Dietary Fats/pharmacology , Neoplasm Metastasis , Palmitic Acid/pharmacology , Schwann Cells/drug effects , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Dietary Fats/administration & dosage , Early Growth Response Protein 2/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Galanin/metabolism , Histones/chemistry , Histones/metabolism , Humans , Male , Mice , Palmitic Acid/administration & dosage , Schwann Cells/metabolism
16.
Sci Adv ; 7(39): eabi7828, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34550736

ABSTRACT

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

17.
STAR Protoc ; 2(2): 100539, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34036284

ABSTRACT

Molecular daily rhythms can be captured by precisely timed tissue harvests from groups of animals. This protocol will allow the investigator to identify transcriptional rhythms in the mouse liver while also providing a template for similar analyses in other whole metabolic organs. We describe steps for mouse entrainment, liver dissection, and rhythmicity analysis from total RNA sequencing data. The resulting rhythmic transcriptome will provide the user with a starting point for defining specific biological processes that undergo daily rhythms. For complete details on the use and execution of this protocol, please refer to Koronowski et al. (2019). A similar protocol for interfollicular epidermal cells is demonstrated in Welz et al. (2019).


Subject(s)
Circadian Rhythm/genetics , Dissection/methods , Gene Expression Profiling/methods , Liver , Transcriptome/genetics , Animals , Female , Liver/chemistry , Liver/metabolism , Liver/surgery , Male , Mice , Mice, Inbred C57BL
18.
Cell Stem Cell ; 28(10): 1790-1804.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34010627

ABSTRACT

The role of heterochromatin in cell fate specification during development is unclear. We demonstrate that loss of the lysine 9 of histone H3 (H3K9) methyltransferase G9a in the mammary epithelium results in de novo chromatin opening, aberrant formation of the mammary ductal tree, impaired stem cell potential, disrupted intraductal polarity, and loss of tissue function. G9a loss derepresses long terminal repeat (LTR) retroviral sequences (predominantly the ERVK family). Transcriptionally activated endogenous retroviruses generate double-stranded DNA (dsDNA) that triggers an antiviral innate immune response, and knockdown of the cytosolic dsDNA sensor Aim2 in G9a knockout (G9acKO) mammary epithelium rescues mammary ductal invasion. Mammary stem cell transplantation into immunocompromised or G9acKO-conditioned hosts shows partial dependence of the G9acKO mammary morphological defects on the inflammatory milieu of the host mammary fat pad. Thus, altering the chromatin accessibility of retroviral elements disrupts mammary gland development and stem cell activity through both cell-autonomous and non-autonomous mechanisms.


Subject(s)
Endogenous Retroviruses , Histone-Lysine N-Methyltransferase , Mammary Glands, Animal/growth & development , Adipose Tissue/growth & development , Adipose Tissue/immunology , Animals , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Female , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Immunity , Mammary Glands, Animal/immunology
19.
Nat Metab ; 3(2): 182-195, 2021 02.
Article in English | MEDLINE | ID: mdl-33619381

ABSTRACT

Head and neck squamous cell carcinoma (SCC) remains among the most aggressive human cancers. Tumour progression and aggressiveness in SCC are largely driven by tumour-propagating cells (TPCs). Aerobic glycolysis, also known as the Warburg effect, is a characteristic of many cancers; however, whether this adaptation is functionally important in SCC, and at which stage, remains poorly understood. Here, we show that the NAD+-dependent histone deacetylase sirtuin 6 is a robust tumour suppressor in SCC, acting as a modulator of glycolysis in these tumours. Remarkably, rather than a late adaptation, we find enhanced glycolysis specifically in TPCs. More importantly, using single-cell RNA sequencing of TPCs, we identify a subset of TPCs with higher glycolysis and enhanced pentose phosphate pathway and glutathione metabolism, characteristics that are strongly associated with a better antioxidant response. Together, our studies uncover enhanced glycolysis as a main driver in SCC, and, more importantly, identify a subset of TPCs as the cell of origin for the Warburg effect, defining metabolism as a key feature of intra-tumour heterogeneity.


Subject(s)
Glycolysis , Head and Neck Neoplasms/pathology , Neoplastic Stem Cells/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Antioxidants/metabolism , Disease Progression , Glutathione/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pentose Phosphate Pathway , RNA, Neoplasm/genetics , Single-Cell Analysis , Sirtuins/genetics , Sirtuins/metabolism , Xenograft Model Antitumor Assays
20.
Cell Stem Cell ; 26(6): 817-831, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32502402

ABSTRACT

The circadian clock temporally organizes cellular physiology throughout the day, allowing daily environmental changes to be anticipated and potentially harmful physiologic processes to be temporally separated. By synchronizing all cells at the tissue level, the circadian clock ensures coherent temporal organismal physiology. Recent advances in our understanding of adult stem cell physiology suggest that aging and perturbations in circadian rhythmicity in stem cells are tightly intertwined. Here we discuss how circadian rhythms regulate and synchronize adult stem cell functions and how alterations in clock function during aging modulate the extrinsic and intrinsic mechanisms that determine adult stem cell homeostasis.


Subject(s)
Adult Stem Cells , Circadian Clocks , Circadian Rhythm , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...