Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891252

ABSTRACT

Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.

2.
Psychol Assess ; 36(1): 14-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010780

ABSTRACT

Coronavirus Anxiety Scale (CAS) is a widely used measure that captures somatic symptoms of coronavirus-related anxiety. In a large-scale collaboration spanning 60 countries (Ntotal = 21,513), we examined the CAS's measurement invariance and assessed the convergent validity of CAS scores in relation to the fear of COVID-19 (FCV-19S) and the satisfaction with life (SWLS-3) scales. We utilized both conventional exact invariance tests and alignment procedures, with results revealing that the single-factor model fit the data well in almost all countries. Partial scalar invariance was supported in a subset of 56 countries. To ensure the robustness of results, given the unbalanced samples, we employed resampling techniques both with and without replacement and found the results were more stable in larger samples. The alignment procedure demonstrated a high degree of measurement invariance with 9% of the parameters exhibiting noninvariance. We also conducted simulations of alignment using the parameters estimated in the current model. Findings demonstrated reliability of the means but indicated challenges in estimating the latent variances. Strong positive correlations between CAS and FCV-19S estimated with all three different approaches were found in most countries. Correlations of CAS and SWLS-3 were weak and negative but significantly differed from zero in several countries. Overall, the study provided support for the measurement invariance of the CAS and offered evidence of its convergent validity while also highlighting issues with variance estimation. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Anxiety , COVID-19 , Humans , Reproducibility of Results , Psychometrics/methods , Anxiety/diagnosis , COVID-19/diagnosis , Fear
3.
BMC Plant Biol ; 22(1): 175, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387612

ABSTRACT

Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia faba L.), lack of autofertility in a context of insufficient pollination can lead to a severe decrease in grain yield. Here we performed the first QTL analysis aimed at identifying the genomic regions controlling autofertility in this crop. We combined pod and seed setting scores from a recombinant inbred population (RIL) segregating for autofertility in different environments and years with measurements of morphological floral traits and pollen production and viability. This approach revealed 19 QTLs co-localizing in six genomic regions. Extensive co-localization was evident for various floral features whose QTLs clustered in chrs. I, II and V, while other QTLs in chrs. III, IV and VI revealed co-localization of flower characteristics and pod and seed set data. The percentage of phenotypic variation explained by the QTLs ranged from 8.9 for style length to 25.7 for stigma angle. In the three QTLs explaining the highest phenotypic variation (R 2 > 20), the marker alleles derived from the autofertile line Vf27. We further inspected positional candidates identified by these QTLs which represent a valuable resource for further validation. Our results advance the understanding of autofertility in faba bean and will aid the identification of responsible genes for genomic-assisted breeding in this crop.


Subject(s)
Vicia faba , Chromosome Mapping , Phenotype , Plant Breeding , Quantitative Trait Loci/genetics , Vicia faba/genetics
4.
Methods Mol Biol ; 2438: 323-344, 2022.
Article in English | MEDLINE | ID: mdl-35147952

ABSTRACT

The experimental versatility of the fruit fly has helped to uncover the molecular basis of epithelial cell polarity. In this chapter, we provide protocols to dissect Drosophila larval salivary glands (SGs) for ex vivo culture and live imaging, and for fixing and immunostaining for analysis by fluorescence microscopy. We describe how to combine these approaches with genetic and pharmacological assays. These techniques can be applied to study signaling pathways regulating epithelial cell polarity, membrane trafficking, gland secretion, and their impacts on animal feeding behavior.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Polarity , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Larva/metabolism , Salivary Glands
5.
Sensors (Basel) ; 21(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34640905

ABSTRACT

The use of Software-Defined Networking (SDN) in the communications of the Industrial Internet of Things (IIoT) demands more comprehensive solutions than those developed to date. The lack of an SDN solution applicable in diverse IIoT scenarios is the problem addressed in this article. The main cause of this problem is the lack of integration of a set of aspects that should be considered in a comprehensive SDN solution. To contribute to the solution of this problem, a review of the literature is conducted in this article, identifying the main requirements for industrial networks nowadays as well as their solutions through SDN. This review indicates that aspects such as security, independence of the network technology used, and network centralized management can be tackled using SDN. All the advantages of this technology can be obtained through the implementation of the same solution, considering a set of aspects proposed by the authors for the implementation of SDNs in IIoT networks. Additionally, after analyzing the main features and advantages of several architectures proposed in the literature, an architecture with distributed network control is proposed for all SDN network scenarios in IIoT. This architecture can be adapted through the inclusion of other necessary elements in specific scenarios. The distributed network control feature is relevant here, as it prevents a single fault-point for an entire industrial network, in exchange for adding some complexity to the network. Finally, the first ideas for the selection of an SDN controller suitable for IIoT scenarios are included, as this is the core element in the proposed architecture. The initial proposal includes the identification of six controllers, which correspond to different types of control planes, and ten characteristics are defined for selecting the most suitable controller through the Analytic Hierarchy Process (AHP) method. The analysis and proposal of different fundamental aspects for the implementation of SDNs in IIoT in this article contribute to the development of a comprehensive solution that is not focused on the characteristics of a specific scenario and would, therefore, be applicable in limited situations.

6.
Sci Rep ; 11(1): 13716, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215783

ABSTRACT

Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.


Subject(s)
Chromosome Mapping , Flowers/genetics , Quantitative Trait Loci , Vicia faba/genetics , Flowers/growth & development , Phenotype
7.
Sci Rep ; 10(1): 17678, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077797

ABSTRACT

Pod dehiscence causes important yield losses in cultivated crops and therefore has been a key trait strongly selected against in crop domestication. In spite of the growing knowledge on the genetic basis of dehiscence in different crops, no information is available so far for faba bean. Here we conduct the first comprehensive study for faba bean pod dehiscence by combining, linkage mapping, comparative genomics, QTL analysis and histological examination of mature pods. Mapping of dehiscence-related genes revealed conservation of syntenic blocks among different legumes. Three QTLs were identified in faba bean chromosomes II, IV and VI, although none of them was stable across years. Histological analysis supports the convergent phenotypic evolution previously reported in cereals and related legume species but revealed a more complex pattern in faba bean. Contrary to common bean and soybean, the faba bean dehiscence zone appears to show functional equivalence to that described in crucifers. The lignified wall fiber layer, which is absent in the paucijuga primitive line Vf27, or less lignified and vacuolated in other dehiscent lines, appears to act as the major force triggering pod dehiscence in this species. While our findings, provide new insight into the mechanisms underlying faba bean dehiscence, full understanding of the molecular bases will require further studies combining precise phenotyping with genomic analysis.


Subject(s)
Crops, Agricultural/physiology , Genes, Plant , Vicia faba/physiology , Chromosomes, Plant , Crops, Agricultural/genetics , Quantitative Trait Loci , Vicia faba/genetics
8.
Rev Med Inst Mex Seguro Soc ; 58(Supl 1): S62-S74, 2020 04 27.
Article in Spanish | MEDLINE | ID: mdl-34695317

ABSTRACT

Breast cancer is the most frequent type of cancer in women in the world. In Mexico, since 2006, this disease has become the leading cancer-related cause of death in women. It is estimated that incidence and mortality will continue to rise due to population aging, to changes in reproductive patterns, to a higher prevalence of risk factors and to limited access to medical care, resulting in delayed early diagnosis and timely treatment. The latter factors are the ones to improve in developing countries to decrease the high incidence and mortality associated with this disease. Recently, there is a great interest regarding breast cancer heterogeneity, and it is anticipated that the application of new technologies will improve our comprehension of this disease and will be reflected in a benefit for patients in the short term. Here, we review updated information on molecular diagnosis and therapeutics, as well as recent highlights in the biology of breast cancer.


A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente en la mujer. En México, a partir del año 2006, esta enfermedad se ha convertido en la primera causa de muerte por cáncer en las mujeres. Se estima que la incidencia y mortalidad seguirán aumentando debido al envejecimiento poblacional, a los cambios en los patrones reproductivos, a una mayor prevalencia de los factores de riesgo y a los problemas para el acceso inmediato a la atención médica, teniendo como consecuencia retrasos para el diagnóstico temprano y el tratamiento oportuno. Estos últimos parecen ser los factores más importantes por mejorar en los países en desarrollo para tratar de disminuir la alta incidencia y mortalidad asociadas a la enfermedad. En años recientes, se ha generado un gran interés sobre la heterogeneidad del cáncer de mama y se anticipa que la aplicación de nuevas tecnologías pueda mejorar nuestra comprensión de cada uno de los subtipos de la enfermedad y lograr así un beneficio para las pacientes a corto plazo. Esta revisión pretende recopilar información actualizada sobre los avances en diagnósticos moleculares y terapéuticos, así como en la comprensión de la biología de la enfermedad.

9.
Elife ; 82019 11 07.
Article in English | MEDLINE | ID: mdl-31697234

ABSTRACT

An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting ßHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Cell Membrane/metabolism , Cell Polarity , Cytoskeleton/metabolism , Drosophila melanogaster/ultrastructure , Homeostasis , Imaging, Three-Dimensional , Intercellular Junctions/metabolism , Larva/cytology , Larva/ultrastructure , Myosin Type V/metabolism , Protein Transport , Salivary Glands/cytology , Salivary Glands/ultrastructure , rab GTP-Binding Proteins/metabolism
10.
Small GTPases ; 10(2): 89-98, 2019 03.
Article in English | MEDLINE | ID: mdl-28118081

ABSTRACT

The organization of intracellular transport processes is adapted specifically to different cell types, developmental stages, and physiologic requirements. Some protein traffic routes are universal to all cells and constitutively active, while other routes are cell-type specific, transient, and induced under particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab proteins have been identified in model organisms, and molecular principles underlying Rab functions have been uncovered. Rabs provide intracellular landmarks that define intracellular transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles during development and we consider novel approaches to investigate Rab functions in vivo.


Subject(s)
Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , rab GTP-Binding Proteins/metabolism , Animals
11.
PLoS One ; 13(5): e0196811, 2018.
Article in English | MEDLINE | ID: mdl-29727447

ABSTRACT

BACKGROUND: Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level. METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico. FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion. CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.


Subject(s)
Dengue/epidemiology , Population Surveillance/methods , Aedes/virology , Animals , Brazil/epidemiology , Cost-Benefit Analysis/statistics & numerical data , Dengue/virology , Disease Outbreaks , Humans , Malaysia/epidemiology , Mexico/epidemiology , Models, Statistical , Software
12.
Int J Parasitol ; 48(8): 621-639, 2018 07.
Article in English | MEDLINE | ID: mdl-29571981

ABSTRACT

The adhesion of Giardia duodenalis trophozoites to intestinal epithelial cells allows the onset and maintenance of giardiasis. During these interactions, epithelial cells can be committed to apoptosis by enzymes secreted by the parasites, including cysteine proteases that are increasingly identified as virulence factors in parasitic protozoa. In this work, a monoclonal antibody (mAb1G3) raised against G. duodenalis surface components was found to react with a 25 kDa protein expressed in the cell surface and flagella of G. duodenalis trophozoites. When trophozoites expressing this protein were cultured with IEC-6 intestinal epithelial cell monolayers, a dynamic release of this protein was observed with mAbIG3. Proteomic analysis identified the protein as a mature cathepsin B-like (gCatB) enzyme, whose proteolytic activity, detected in zymograms, was eliminated by CatB inhibitor E-64. This protein was named giardipain-1 due to its functional papain-like features and was purified by affinity chromatography using mAbIG3. Upon exposure to the purified, mature and secreted forms of giardipain-1, IEC-6 epithelial cell monolayers displayed membrane blebbing and phosphatidylserine exposure on the outer cell surface, indicating an apoptotic process. In Madin Darby Canine Kidney (MDCK) cell monolayers, giardipain-1 leads to the appearance of pore-like regions and of gaps along cell-cell junctions, to decreased transepithelial electrical resistance (TER), caspase-3 activation and poly-ADP-ribose polymerase (PARP) fragmentation. At early times during exposure, giardipain-1 co-localized at cell-cell junctions, associated with occludin and induced the delocalization and degradation of tight junction proteins occludin and claudin-1. The damage caused to epithelial monolayers by giardipain-1 was blocked by pre-incubation with the CatB B Inhibitor E-64. Furthermore, silencing the giardipain-1 gene in trophozoites lowered the proteolytic activity of giardipain-1 and reduced the damage in IEC-6 monolayers. The damage observed appears to be specific to giardipain activity since almost no damage was observed when IEC-6 monolayers were incubated with papain, a non-related cysteine protease. Hence this study suggests that giardipain-1 triggers, in epithelial cells, degradation of cell-cell junctional components and apoptotic damage, supporting the notion of giardiapain-1 as a virulence factor of Giardia.


Subject(s)
Epithelial Cells/drug effects , Giardia lamblia/enzymology , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal , Apoptosis , Catalytic Domain , Epithelial Cells/physiology , Gene Expression Regulation, Enzymologic , Giardia lamblia/genetics , Giardia lamblia/metabolism , Humans , Models, Molecular , Peptide Hydrolases/genetics , Protein Conformation , Rats
13.
Rev Fac Cien Med Univ Nac Cordoba ; 75(4): 314-315, 2018 12 12.
Article in Spanish | MEDLINE | ID: mdl-30734713

ABSTRACT

The decision to administer general anesthesia is childhood age remains controversial. East the issue has not only generated a high degree of concern in health professionals for Neonates and infants, but also, by the school age, being susceptible to alterations. during the consolidation process of earning and memory, where anesthetics They alter brain functioning, causing alterations in synaptogenesis and neurodegeneration in different areas such as. primary visual cortex, temporal cortices / sensory, the frontal cortex and the hippocampus. This is associated with some factors. of risk as the drugs and / or doses used for the procedure, exposure time, or own conditions of the patient.


La decisión de administrar anestesia general en la edad infantil sigue siendo controversial. Este tema no solo ha generado un alto grado de preocupación en los profesionales de la salud por los neonatos y lactantes, sino también, por la edad escolar, siendo susceptibles a alteraciones durante el proceso de consolidación del aprendizaje y memoria, donde los anestésicos alteran el funcionamiento cerebral, provocando alteraciónes en la sinaptogénesis y neurodegeneración en diferentes áreas como la corteza visual primaria, cortezas temporales / somato sensoriales, la corteza frontal y el hipocampo . Esto asociado a algunos factores de riesgo como los fármacos y/o dosis utilizadas para el procedimiento, tiempo de exposición, o condiciones propias del paciente.


Subject(s)
Anesthesia, General/adverse effects , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/prevention & control , Anesthesia, General/methods , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Risk Factors
14.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1714-1733, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28554775

ABSTRACT

Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin ß1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.


Subject(s)
Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-2 Protein/genetics , rac1 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics , Animals , Claudin-2/metabolism , Claudin-4/genetics , Claudin-4/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dogs , Epithelial Cells/metabolism , Humans , Madin Darby Canine Kidney Cells , Phosphorylation , Tight Junctions/genetics , Transfection
15.
Curr Opin Cell Biol ; 42: 13-21, 2016 10.
Article in English | MEDLINE | ID: mdl-27085003

ABSTRACT

Apico-basal polarity is a hallmark of epithelial tissues. The integrated activity of several evolutionarily conserved protein complexes is essential to control epithelial polarity during development and homeostasis. Many components of these protein complexes were originally identified in genetic screens performed in Drosophila or Caenorhabditis elegans due to defects in cell polarity. With time, it became obvious that these protein complexes not only control various aspects of apico-basal polarity, but also perform a plethora of other functions, such as growth control, organization of endocytic activity, regulation of signaling and asymmetric cell division, to mention just a few. Here we summarize some results mostly obtained from studies in Drosophila to elucidate how variation in protein composition and modification of individual components contribute to make polarity complexes versatile platforms to fulfill a variety of functions.


Subject(s)
Cell Polarity , Drosophila melanogaster/cytology , Epithelial Cells/cytology , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epithelial Cells/metabolism , Models, Biological
16.
Elife ; 42015 Nov 06.
Article in English | MEDLINE | ID: mdl-26544546

ABSTRACT

The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis.


Subject(s)
Cell Adhesion , Cytoskeleton/metabolism , Drosophila Proteins/metabolism , Drosophila/embryology , Epithelial Cells/physiology , Membrane Proteins/metabolism , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Membrane Proteins/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism
17.
Dev Cell ; 33(5): 501-3, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26058055

ABSTRACT

Tricellular junctions tightly seal epithelia at the corners of three cells. In this issue of Developmental Cell, Byri et al. (2015) show that Anakonda, a novel Drosophila transmembrane protein, contains an unusual tripartite extracellular domain organization, which explains the tripartite septum filling the tricellular junction, previously revealed by ultrastructure analysis.


Subject(s)
Animals, Genetically Modified/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Epithelium/growth & development , Intercellular Junctions/physiology , Tight Junctions/physiology , Animals
18.
Exp Cell Res ; 320(1): 108-18, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24140471

ABSTRACT

In addition to being a very well-known ion pump, Na(+), K(+)-ATPase is a cell-cell adhesion molecule and the receptor of digitalis, which transduces regulatory signals for cell adhesion, growth, apoptosis, motility and differentiation. Prolonged ouabain (OUA) blockage of activity of Na(+), K(+)-ATPase leads to cell detachment from one another and from substrates. Here, we investigated the cellular mechanisms involved in tight junction (TJ) disassembly upon exposure to toxic levels of OUA (≥300 nM) in epithelial renal canine cells (MDCK). OUA induces a progressive decrease in the transepithelial electrical resistance (TER); inhibitors of the epidermal growth factor receptor (EGFR, PD153035), cSrc (SU6656 and PP2) and ERK1/2 kinases (PD98059) delay this decrease. We have determined that the TER decrease depends upon internalization and degradation of the TJs proteins claudin (CLDN) 2, CLDN-4, occludin (OCLN) and zonula occludens-1 (ZO-1). OUA-induced degradation of proteins is either sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition. In agreement with the protein degradation findings, OUA decreases the cellular content of ZO-1 and CLDN-2 mRNAs but surprisingly, increases the mRNA of CLDN-4 and OCLN. Changes in the mRNA levels are sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition as well. Thus, toxic levels of OUA activate the EGFR-cSrc-ERK1/2 pathway to induce endocytosis, internalization and degradation of TJ proteins. We also observed decreases in the levels of CLDN-2 protein and mRNA, which were independent of the EGFR-cSrc-ERK1/2 pathway.


Subject(s)
Endocytosis/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ouabain/pharmacology , Proteolysis/drug effects , Tight Junction Proteins/metabolism , Animals , Cells, Cultured , Dogs , Madin Darby Canine Kidney Cells
19.
G3 (Bethesda) ; 3(2): 153-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23390593

ABSTRACT

The evolutionarily conserved transmembrane protein Crumbs is required for epithelial polarity and morphogenesis in the embryo, control of tissue size in imaginal discs and morphogenesis of photoreceptor cells, and prevents light-dependent retinal degeneration. The small cytoplasmic domain contains two highly conserved regions, a FERM (i.e., protein 4.1/ezrin/radixin/moesin)-binding and a PDZ (i.e., postsynaptic density/discs large/ZO-1)-binding domain. Using a fosmid-based transgenomic approach, we analyzed the role of the two domains during invagination of the tracheae and the salivary glands in the Drosophila embryo. We provide data to show that the PDZ-binding domain is essential for the maintenance of cell polarity in both tissues. In contrast, in embryos expressing a Crumbs protein with an exchange of a conserved Tyrosine residue in the FERM-binding domain to an Alanine, both tissues are internalized, despite some initial defects in apical constriction, phospho-Moesin recruitment, and coordinated invagination movements. However, at later stages these embryos fail to undergo dorsal closure, germ band retraction, and head involution. In addition, frequent defects in tracheal fusion were observed. These results suggest stage and/or tissue specific binding partners. We discuss the power of this fosmid-based system for detailed structure-function analyses in comparison to the UAS/Gal4 system.


Subject(s)
Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Cytoplasm/metabolism , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Embryo, Nonmammalian/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Morphogenesis , Mutation , PDZ Domains , Protein Structure, Tertiary , Salivary Glands, Minor/physiology
20.
Proc Natl Acad Sci U S A ; 107(25): 11387-92, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20534449

ABSTRACT

Epithelial cells treated with high concentrations of ouabain (e.g., 1 microM) retrieve molecules involved in cell contacts from the plasma membrane and detach from one another and their substrates. On the basis of this observation, we suggested that ouabain might also modulate cell contacts at low, nontoxic levels (10 or 50 nM). To test this possibility, we analyzed its effect on a particular type of cell-cell contact: the tight junction (TJ). We demonstrate that at concentrations that neither inhibit K(+) pumping nor disturb the K(+) balance of the cell, ouabain modulates the degree of sealing of the TJ as measured by transepithelial electrical resistance (TER) and the flux of neutral 3 kDa dextran (J(DEX)). This modulation is accompanied by changes in the levels and distribution patterns of claudins 1, 2, and 4. Interestingly, changes in TER, J(DEX), and claudins behavior are mediated through signal pathways containing ERK1/2 and c-Src, which have distinct effects on each physiological parameter and claudin type. These observations support the theory that at low concentrations, ouabain acts as a modulator of cell-cell contacts.


Subject(s)
Epithelial Cells/drug effects , Ouabain/pharmacology , Tight Junctions/drug effects , Animals , CSK Tyrosine-Protein Kinase , Dextrans/chemistry , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Epithelial Cells/cytology , Extracellular Signal-Regulated MAP Kinases/metabolism , Ions , Models, Biological , Potassium/chemistry , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism , src-Family Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...