Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 20(7): 3645-3652, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37306254

ABSTRACT

PVP is a hydrophilic polymer commonly used as an excipient in pharmaceutical formulations. Here we have performed time-resolved high-energy X-ray scattering experiments on pellets of PVP at different humidity conditions for 1-2 days. A two-phase exponential decay in water sorption is found with a peak in the differential pair distribution function at 2.85 Å, which is attributed to the average (hydrogen bonded) carbonyl oxygen-water oxygen distance. Additional scattering measurements on powders with fixed compositions ranging from 2 to 12.3 wt % H2O were modeled with Empirical Potential Structure Refinement (EPSR). The models reveal approximately linear relations between the carbonyl oxygen-water oxygen coordination number (nOC-OW) and the water oxygen-water oxygen coordination number (nOW-OW) versus water content in PVP. A stronger preference for water-water hydrogen bonding over carbonyl-water bonding is found. At all the concentrations studied the majority of water molecules were found to be randomly isolated, but a wide distribution of coordination environments of water molecules is found within the PVP polymer strands at the highest concentrations. Overall, the EPSR models indicate a continuous evolution in structure versus water content with nOW-OW=1 occurring at ∼12 wt % H2O, i.e., the composition where, on average, each water molecule is surrounded by one other water molecule.


Subject(s)
Povidone , Water , Povidone/chemistry , Water/chemistry , X-Ray Diffraction , Polymers/chemistry , Oxygen
2.
J Chem Phys ; 158(22)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37290074

ABSTRACT

High-energy x-ray diffraction from molten and glassy BaB2O4 and BaB4O7 has been performed using aerodynamic levitation and laser heating over a wide range of temperatures. Remarkably, even in the presence of a heavy metal modifier dominating x-ray scattering, it was possible to extract accurate values for the tetrahedral, sp3, boron fraction, N4, which declines with increasing temperature, using bond valence-based mapping from the measured mean B-O bond lengths while accounting for vibrational thermal expansion. These are used within a boron-coordination-change model to extract enthalpies, ΔH, and entropies, ΔS, of isomerization between sp2 and sp3 boron. The results for BaB4O7, ΔH = 22(3) kJ mol-1 boron, ΔS = 19(2) J mol-1 boron K-1, agree quantitatively with those found previously for Na2B4O7. Analytical expressions for N4(J, T) and associated configurational heat capacity, CPconf(J, T), and entropy, Sconf(J, T), contributions are extended to cover a wide composition range 0 ≤ J = BaO/B2O3 ≤ 3 using a model for ΔH(J) and ΔS(J) derived empirically for lithium borates. Maxima in the CPconf(J, Tg) and fragility index contributions are thereby predicted for J ≲ 1, higher than the maximum observed and predicted in N4(J, Tg) at J ≃ 0.6. We discuss the utility of the boron-coordination-change isomerization model in the context of borate liquids containing other modifiers and the prospect of neutron diffraction to aid in empirical determinations of modifier-dependent effects, illustrated by new neutron diffraction data on Ba11B4O7 glass, its well-known α-polymorph, and lesser-known δ-phase.


Subject(s)
Borates , Boron , Entropy , Borates/chemistry , Barium , Hot Temperature
3.
J Pharm Sci ; 111(3): 818-824, 2022 03.
Article in English | MEDLINE | ID: mdl-34890631

ABSTRACT

Amorphous pharmaceuticals often possess a wide range of molecular conformations and bonding arrangements. The x-ray pair distribution function (PDF) method is a powerful technique for the characterization of variations in both intra-molecular and inter-molecular packing arrangements. Here, the x-ray PDF of amorphous Indomethacin is shown to be particularly sensitive to the preferred orientations of the chlorobenzyl ring found in isomers in the crystalline state. In some cases, the chlorobenzyl ring has no preferred torsional angle in the amorphous form, while in others evidence of distinct isomer orientations are observed. Amorphous samples with no preferred torsion angles of the chlorobenzyl ring are found to favor enhanced inter-molecular hydrogen bonding, and this is reflected in the intensity of the first sharp diffraction peak. These significant variations in structure rule out amorphous Indomethacin as a possible standard for x-ray PDF measurements. At high humidity, time resolved PDF's for >40 h reveal water molecules forming hydrogen bonds with Indomethacin molecules. A simple linear hydrogen bond model indicates that water molecules in the wet amorphous form have similar hydrogen bond strengths to those found between Indomethacin dimers or chains in the dry amorphous form.


Subject(s)
Indomethacin , Polymers , Hydrogen Bonding , Indomethacin/chemistry , Water , X-Ray Diffraction
4.
J Phys Condens Matter ; 33(19)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33540391

ABSTRACT

High-energy photon diffraction minimizes many of the corrections associated with laboratory x-ray diffractometers, and enables structure factor measurements to be made over a wide range of momentum transfers. The method edges us closer toward an ideal experiment, in which coordination numbers can be extracted without knowledge of the sample density. Three case studies are presented that demonstrate new hard x-ray methods for studying the structure of glassy and amorphous materials. First, the methodology and analysis of high-energy grazing incidence on thin films is discussed for the case of amorphous In2O3. The connectivity of irregular InO6polyhedra are shown to exist in face-, edge- and corner-shared configurations in the approximate ratio of 1:2:3. Secondly, the technique of high-energy small and wide angle scattering has been carried out on laser heated and aerodynamically levitated samples of silica-rich barium silicate (20BaO:80SiO2), from the single phase melt at 1500oC to the phase separated glass at room temperature. Based on Ba-O coordination numbers of 6 to 7, it is argued that the although the potential of Ba is ionic, it is weak enough to cause the liquid-liquid immiscibility to become metastable. Lastly, high-energy small and wide angle scattering has also been applied to high water content (up to 12 wt.%) samples of hydrous SiO2glass quenched from 1500oC at 4 GPa. An increase of Si1-O2correlations at 4.3 Å is found to be consistent with an increase in the population of three-membered SiO4rings at the expense of larger rings.

6.
J Phys Chem Lett ; 11(2): 427-431, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31867975

ABSTRACT

High-resolution X-ray pair distribution functions for molten and glassy TeO2 reveal coordination numbers nTeO ≈ 4. However, distinct from the known α-, ß-, and γ-TeO2 polymorphs, there is considerable short-range disorder such that no clear cutoff distance between bonded and nonbonded interactions exists. We suggest that this is similar to disorder in δ-TeO2 and arises from a broad distribution of asymmetric Te-O-Te bridges, something that we observe becomes increasingly asymmetric with increasing liquid temperature. Such behavior is qualitatively consistent with existing interpretations of Raman scattering spectra, and equivalent to temperature-induced coordination number reduction, for sufficiently large cutoff radii. Therefore, TeO2 contains a distribution of local environments that are, furthermore, temperature dependent, making it distinct from the canonical single-oxide glass formers. Our results are in good agreement with high-level ab initio cluster calculations.

7.
J Phys Condens Matter ; 31(20): 20LT01, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30790768

ABSTRACT

The structure of molten BaTiO3 has been measured using laser heating, aerodynamic levitation and a combination of neutron diffraction with Ti isotope substitution, x-ray diffraction and spectroscopy. All measurements indicate a Ti-O coordination of n TiO = 4.4(2), far lower than the perovskite or hexagonal crystalline forms. However, n TiO > 4 suggests structural analogy with molten silicates at high pressures. We introduce methodology for ascertaining such analogies and demonstrate similarity with molten CaSiO3 at upper mantle pressures circa 5 GPa. Although some topological differences exist, we propose that planetary melt analogues provide rich insight into important processes relevant to hot exoplanets and Earth's early history.

8.
Dalton Trans ; 47(14): 4790-4793, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29537045

ABSTRACT

Structurally characterized chromium(iii) carboxylates form clusters with a variety of bridging groups introduced from aqueous reaction conditions. The first homoleptic monomeric chromium(iii) carboxylate has been prepared using an anhydrous salt metathesis synthetic route. The carboxylate groups coordinate the chromium in a bidentate chelate yielding an aliphatic soluble complex. The complex was characterized by a variety of methods including high energy X-ray diffraction, FD-MS, IR and Raman spectroscopy, complemented by DFT modeling.

9.
Sci Rep ; 8(1): 2434, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402944

ABSTRACT

In the exceedingly rare event of nuclear reactor core meltdown, uranium dioxide fuel reacts with Zircaloy cladding to produce eutectic melts which can subsequently be oxidized by coolant/moderator water. Oxidized corium liquids in the xUO2·(100 - x)ZrO2 system were produced via laser melting of UO2-ZrO2 mixtures to temperatures in excess of 3000 K. Contamination was avoided by floating the droplets on a gas stream within an aerodynamic levitator and in-situ high-energy x-ray diffraction experiments allowed structural details to be elucidated. Molecular dynamics simulations well reproduced diffraction and density data, and show less compositional variation in thermal expansion and viscosity than suggested by existing measurements. As such, corium liquids maintain their highly penetrating nature irrespective of the amount of oxidized cladding dissolved in the molten fuel. Metal-oxygen coordination numbers vary with both composition and temperature. The former is due to mismatch in native values, nUO(x = 100) ≈ 7 and nZrO(x = 0) ≈ 6, and the requirement for oxygen site stabilization. The latter provides a thermal expansion mechanism.

10.
J Chem Phys ; 146(8): 084504, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28249415

ABSTRACT

A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na+. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å-1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å-1. Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

11.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3686-3692, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27062908

ABSTRACT

BACKGROUND: Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. METHODS: Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. RESULTS: We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. CONCLUSIONS: Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. GENERAL SIGNIFICANCE: Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high bioavailability. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Subject(s)
Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Acoustics , Crystallization , Solvents/chemistry , Surface Tension , X-Rays
12.
Rev Sci Instrum ; 87(7): 073902, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27475566

ABSTRACT

An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

13.
J Phys Chem B ; 120(23): 5278-90, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27214120

ABSTRACT

Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor ß-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding patterns are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity of chain-like and tetrahedral dimorphous forms determine both the structural features and fundamental glass properties (thermal, electronic, etc.). DFT simulations of mercury species and RMC modeling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ≤ m ≤ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier.

14.
J Chem Phys ; 144(13): 134504, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27059577

ABSTRACT

X-ray diffraction measurements of liquid water are reported at pressures up to 360 MPa corresponding to a density of 0.0373 molecules per Å(3). The measurements were conducted at a spatial resolution corresponding to Q(max) = 16 Å(-1). The method of data analysis and measurement in this study follows the earlier benchmark results reported for water under ambient conditions having a density of 0.0333 molecules per Å(3) and Q(max) = 20 Å(-1) [J. Chem. Phys. 138, 074506 (2013)] and at 70 °C having a density of 0.0327 molecules per Å(3) and Q(max) = 20 Å(-1) [J. Chem. Phys. 141, 214507 (2014)]. The structure of water is very different at these three different T and P state points and thus they provide the basis for evaluating the fidelity of molecular simulation. Measurements show that at 360 MPa, the 4 waters residing in the region between 2.3 and 3 Å are nearly unchanged: the peak position, shape, and coordination number are nearly identical to their values under ambient conditions. However, in the region above 3 Å, large structural changes occur with the collapse of the well-defined 2nd shell and shifting of higher shells to shorter distances. The measured structure is compared to simulated structure using intermolecular potentials described by both first-principles methods (revPBE-D3) and classical potentials (TIP4P/2005, MB-pol, and mW). The DFT-based, revPBE-D3, method and the many-body empirical potential model, MB-pol, provide the best overall representation of the ambient, high-temperature, and high-pressure data. The revPBE-D3, MB-pol, and the TIP4P/2005 models capture the densification mechanism, whereby the non-bonded 5th nearest neighbor molecule, which partially encroaches the 1st shell at ambient pressure, is pushed further into the local tetrahedral arrangement at higher pressures by the more distant molecules filling the void space in the network between the 1st and 2nd shells.

15.
J Phys Condens Matter ; 28(1): 015102, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26656592

ABSTRACT

A molecular dynamics model of liquid UO2 that is in good agreement with recent high-energy x-ray diffraction data has been analyzed using the Bhatia-Thornton formalism. A pre-peak appears in the topological structure factor S NN(Q) at Q = 1.85(1)Å(-1) which is not present in the more common, element specific Faber-Ziman partial structure factors. A radical Voronoi tessellation of the 3D molecular dynamics model shows the presence of a wide distribution of clusters, consistent with presence of highly mobile oxygen atoms. However, 4-fold Voronoi polyhedra (n 4) are found to dominate the structure and the majority of clusters can be described by the distribution n 3 ⩽ n 4 ⩾ n 5. It is argued that an open network of 4-fold Voronoi polyhedra could explain the origin of the pre-peak in S NN(Q) and the topological ordering observed in liquid UO2.

16.
J Phys Condens Matter ; 27(45): 455104, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26499978

ABSTRACT

Using high energy x-ray diffraction, the structure factors of glassy and molten B2O3 were measured with high signal-to-noise, up to a temperature of T = 1710(20) K. The observed systematic changes with T are shown to be consistent with the dissolution of hexagonal [B3O6] boroxol rings, which are abundant in the glass, whilst the high-T (>~1500 K) liquid can be more closely described as a random network structure based on [BO3] triangular building blocks. We therefore argue that diffraction data are in fact qualitatively sensitive to the presence of small rings, and support the existence of a continuous structural transition in molten B2O3, for which the temperature evolution of the 808 cm−1 Raman scattering band (boroxol breathing mode) has long stood as the most emphatic evidence. Our conclusions are supported by both first-principles and polarizable ion model molecular dynamics simulations which are capable of giving good account of the experimental data, so long as steps are taken to ensure a ring fraction similar to that expected from Raman spectroscopy. The mean thermal expansion of the B-O bond has been measured directly to be αBO = 3.7(2) × 10−6 K−1, which accounts for a few percent of the bulk expansion just above the glass transition temperature, but accounts for greater than one third of the bulk expansion at temperatures in excess of 1673 K.

17.
Rev Sci Instrum ; 86(9): 096105, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429492

ABSTRACT

Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å(-1), signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å(-1), the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å(-1) was significantly decreased when the collimators were installed.

18.
J Chem Phys ; 141(21): 214507, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481152

ABSTRACT

Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g(OO)(r) over the range 254.2-365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g(OO)(r) concomitant with the compressibility minimum at 319 K.

19.
Science ; 346(6212): 984-7, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25414311

ABSTRACT

Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

20.
Phys Rev Lett ; 112(15): 157801, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24785072

ABSTRACT

The complete set of partial pair distribution functions for a rare earth oxide liquid are measured by combining aerodynamic levitation, neutron and x-ray diffraction on Y2O3, and Ho2O3 melts at 2870 K. The average Y-O (or Ho-O) coordination of these isomorphic melts is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2O3 (or Ho2O3). Investigation of La2O3, ZrO2, and Al2O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation-oxygen coordination. These measurements suggest a general trend towards lower coordination compared to their crystalline counterparts. It is found that the coordination drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations, such as SiO2. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...