Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Proc Natl Acad Sci U S A ; 121(16): e2400523121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588429
2.
Proc Natl Acad Sci U S A ; 121(9): e2315132121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377199

ABSTRACT

The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Ligands , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating/physiology , Cyclic AMP/metabolism , Biophysical Phenomena , Cyclic Nucleotide-Gated Cation Channels/metabolism
4.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287019

ABSTRACT

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating/physiology , Protein Conformation, alpha-Helical , Nucleotides, Cyclic , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism
5.
J Gen Physiol ; 155(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37882789

ABSTRACT

Ligand-gated ion channels (LGICs) are regularly oligomers containing between two and five binding sites for ligands. Neither in homomeric nor heteromeric LGICs the activation process evoked by the ligand binding is fully understood. Here, we show on theoretical grounds that for LGICs with two to five binding sites, the cooperativity upon channel activation can be determined in considerable detail. The main requirements for our strategy are a defined number of binding sites in a channel, which can be achieved by concatenation, a systematic mutation of all binding sites and a global fit of all concentration-activation relationships (CARs) with corresponding intimately coupled Markovian state models. We take advantage of translating these state models to cubes with dimensions 2, 3, 4, and 5. We show that the maximum possible number of CARs for these LGICs specify all 7, 13, 23, and 41 independent model parameters, respectively, which directly provide all equilibrium constants within the respective schemes. Moreover, a fit that uses stochastically varied scaled unitary start vectors enables the determination of all parameters, without any bias imposed by specific start vectors. A comparison of the outcome of the analyses for the models with 2 to 5 binding sites showed that the identifiability of the parameters is best for a case with 5 binding sites and 41 parameters. Our strategy can be used to analyze experimental data of other LGICs and may be applicable to voltage-gated ion channels and metabotropic receptors.


Subject(s)
Binding Sites , Mutation
6.
Commun Biol ; 6(1): 1003, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783870

ABSTRACT

Ligand-gated ion channels are formed by three to five subunits that control the opening of the pore in a cooperative fashion. We developed a microfluidic chip-based technique for studying ion currents and fluorescence signals in either excised membrane patches or whole cells to measure activation and deactivation kinetics of the channels as well as ligand binding and unbinding when using confocal patch-clamp fluorometry. We show how this approach produces in a few seconds either unidirectional concentration-activation relationships at or near equilibrium and, moreover, respective time courses of activation and deactivation for a large number of freely designed steps of the ligand concentration. The short measuring period strongly minimizes the contribution of disturbing superimposing effects such as run-down phenomena and desensitization effects. To validate gating mechanisms, complex kinetic schemes are quantified without the requirement to have data at equilibrium. The new method has potential for functionally analyzing any ligand-gated ion channel and, beyond, also for other receptors.


Subject(s)
Ligand-Gated Ion Channels , Ligand-Gated Ion Channels/metabolism , Ligands
7.
Commun Biol ; 6(1): 104, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707695

ABSTRACT

Dimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry. We show that 5 out of 8 homodimeric receptors develop characteristic glutamate-induced on- and off-kinetics, as do 11 out of 28 heterodimers. Glutamate-responsive heterodimers were identified within each group, between groups I and II as well as between groups II and III, but not between groups I and III. The glutamate-responsive heterodimers showed heterogeneous activation and deactivation kinetics. Interestingly, mGluR7, not generating a kinetic response in homodimers, showed fast on-kinetics in mGluR2/7 and mGluR3/7 while off-kinetics retained the speed of mGluR2 or mGluR3 respectively. In conclusion, glutamate-induced conformational changes in heterodimers appear within each group and between groups if one group II subunit is present.


Subject(s)
Receptors, Metabotropic Glutamate , Animals , Glutamic Acid , Mammals , Neurons , Kinetics
8.
Front Physiol ; 13: 895324, 2022.
Article in English | MEDLINE | ID: mdl-36091400

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A'-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A'-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A'-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.

9.
PLoS Comput Biol ; 18(8): e1010376, 2022 08.
Article in English | MEDLINE | ID: mdl-35998156

ABSTRACT

Cyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion. Here we studied 16 concatamers with systematically disabled, but still functional, binding sites and quantified channel activation by systems of intimately coupled state models transferred to 4D hypercubes, thereby exploiting a weak voltage dependence of the channels. We provide the complete landscape of free energies for the complex activation process of heterotetrameric channels, including 32 binding steps, in both the closed and open channel, as well as 16 closed-open isomerizations. The binding steps are specific for the subunits and show pronounced positive cooperativity for the binding of the second and the third ligand. The energetics of the closed-open isomerizations were disassembled to elementary subunit promotion energies for channel opening, [Formula: see text], adding to the free energy of the closed-open isomerization of the empty channel, E0. The [Formula: see text] values are specific for the four subunits and presumably invariant for the specific patterns of liganding. In conclusion, subunit cooperativity is confined to the CNBD whereas the subunit promotion energies for channel opening are independent.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels , Olfactory Receptor Neurons , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ligands , Nucleotides, Cyclic/metabolism , Olfactory Receptor Neurons/metabolism , Smell
10.
Commun Biol ; 5(1): 430, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534535

ABSTRACT

Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Nucleotides, Cyclic , Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating , Patch-Clamp Techniques
11.
Elife ; 112022 05 04.
Article in English | MEDLINE | ID: mdl-35506659

ABSTRACT

Inferring adequate kinetic schemes for ion channel gating from ensemble currents is a daunting task due to limited information in the data. We address this problem by using a parallelized Bayesian filter to specify hidden Markov models for current and fluorescence data. We demonstrate the flexibility of this algorithm by including different noise distributions. Our generalized Kalman filter outperforms both a classical Kalman filter and a rate equation approach when applied to patch-clamp data exhibiting realistic open-channel noise. The derived generalization also enables inclusion of orthogonal fluorescence data, making unidentifiable parameters identifiable and increasing the accuracy of the parameter estimates by an order of magnitude. By using Bayesian highest credibility volumes, we found that our approach, in contrast to the rate equation approach, yields a realistic uncertainty quantification. Furthermore, the Bayesian filter delivers negligibly biased estimates for a wider range of data quality. For some data sets, it identifies more parameters than the rate equation approach. These results also demonstrate the power of assessing the validity of algorithms by Bayesian credibility volumes in general. Finally, we show that our Bayesian filter is more robust against errors induced by either analog filtering before analog-to-digital conversion or by limited time resolution of fluorescence data than a rate equation approach.


Subject(s)
Algorithms , Ion Channel Gating , Bayes Theorem , Ion Channels/metabolism , Kinetics
12.
J Gen Physiol ; 154(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35486087

ABSTRACT

Ligand-gated ion channels are oligomers containing several binding sites for the ligands. However, the signal transmission from the ligand binding site to the pore has not yet been fully elucidated for any of these channels. In heteromeric channels, the situation is even more complex than in homomeric channels. Using published data for concatamers of heteromeric cyclic nucleotide-gated channels, we show that, on theoretical grounds, multiple functional parameters of the individual subunits can be determined with high precision. The main components of our strategy are (1) the generation of a defined subunit composition by concatenating multiple subunits, (2) the construction of 16 concatameric channels, which differ in systematically permutated binding sites, (3) the determination of respectively differing concentration-activation relationships, and (4) a complex global fit analysis with corresponding intimately coupled Markovian state models. The amount of constraints in this approach is exceedingly high. Furthermore, we propose a stochastic fit analysis with a scaled unitary start vector of identical elements to avoid any bias arising from a specific start vector. Our approach enabled us to determine 23 free parameters, including 4 equilibrium constants for the closed-open isomerizations, 4 disabling factors for the mutations of the different subunits, and 15 virtual equilibrium-association constants in the context of a 4-D hypercube. From the virtual equilibrium-association constants, we could determine 32 equilibrium-association constants of the subunits at different degrees of ligand binding. Our strategy can be generalized and is therefore adaptable to other ion channels.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels , Binding Sites , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ligands
13.
Purinergic Signal ; 18(2): 177-191, 2022 06.
Article in English | MEDLINE | ID: mdl-35188598

ABSTRACT

P2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation. Thus, they are a challenging pharmacological target. The determination of crystal and cryo-EM structures of several isoforms in the last decade in closed, open, and desensitized states has provided a firm basis for interpreting the huge amount of functional and biochemical data. Electrophysiological characterization in conjugation with optical approaches has generated significant insights into structure-function relationships of P2X receptors. This review focuses on novel optical and related approaches to better understand the conformational changes underlying the activation of these receptors.


Subject(s)
Adenosine Triphosphate , Ion Channel Gating , Adenosine Triphosphate/metabolism , Ion Channel Gating/physiology , Receptors, Purinergic P2X/metabolism
14.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301910

ABSTRACT

Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.


Subject(s)
Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ion Channel Gating , Thermodynamics , Animals , Binding Sites , Cyclic Nucleotide-Gated Cation Channels/genetics , Ligands , Oocytes/metabolism , Protein Conformation , Protein Subunits , Xenopus laevis/growth & development , Xenopus laevis/metabolism
15.
Biochem Biophys Res Commun ; 569: 112-117, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34243066

ABSTRACT

P2X7 receptors are trimeric ion channels activated by extracellular ATP. Upon activation, they trigger cytolysis and apoptosis but also control cell proliferation. To shed more light on channel gating and the underlying function of the individual subunits, receptors of concatenated subunits were built containing a defined number of functional binding sites. The currents evoked by ATP were obtained in the outside-out configuration of the patch-clamp technique, and steady-state activation, as well as time courses, were analyzed. Our results show that each occupied binding site contributes to channel activation. While the occupation of a single binding site can already activate the channels, three bound ligands maximally stabilize the open state. Hence, P2X7 receptors can be described by a stepwise activation process.


Subject(s)
Adenosine Triphosphate/pharmacology , Ion Channel Gating/drug effects , Mutation, Missense , Oocytes/physiology , Receptors, Purinergic P2X7/genetics , Adenosine Triphosphate/metabolism , Algorithms , Animals , Binding Sites/genetics , Female , Ion Channel Gating/genetics , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/genetics , Membrane Potentials/physiology , Oocytes/metabolism , Patch-Clamp Techniques/methods , Rats , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/metabolism , Time Factors , Xenopus laevis
16.
Biophys J ; 120(5): 950-963, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33515603

ABSTRACT

Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Animals , Cyclic AMP/metabolism , Cyclic Nucleotide-Gated Cation Channels , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Nucleotides, Cyclic , Protein Binding
17.
Sci Rep ; 10(1): 21751, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303878

ABSTRACT

Ionotropic purinergic (P2X) receptors are trimeric channels that are activated by the binding of ATP. They are involved in multiple physiological functions, including synaptic transmission, pain and inflammation. The mechanism of activation is still elusive. Here we kinetically unraveled and quantified subunit activation in P2X2 receptors by an extensive global fit approach with four complex and intimately coupled kinetic schemes to currents obtained from wild type and mutated receptors using ATP and its fluorescent derivative 2-[DY-547P1]-AET-ATP (fATP). We show that the steep concentration-activation relationship in wild type channels is caused by a subunit flip reaction with strong positive cooperativity, overbalancing a pronounced negative cooperativity for the three ATP binding steps, that the net probability fluxes in the model generate a marked hysteresis in the activation-deactivation cycle, and that the predicted fATP binding matches the binding measured by fluorescence. Our results shed light into the intricate activation process of P2X channels.


Subject(s)
Receptors, Purinergic P2X2/metabolism , Adenosine Triphosphate/metabolism , HEK293 Cells , Humans , Inflammation/genetics , Pain/genetics , Protein Binding , Receptors, Purinergic P2X2/physiology , Synaptic Transmission/genetics
18.
Chembiochem ; 21(16): 2311-2320, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32227403

ABSTRACT

High-affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools for investigating their natural targets. Cyclic nucleotide-regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging, and there is a need for fluorescent probes that enable the process to be broken down to the single-molecule level. This inspired us to prepare fluorophore-labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. These bioconjugates were prepared by a novel cross-linking strategy that involves substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide-regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation-π interactions between the ligand and the protein. Moreover, the introduced substances have the potential to investigate related target proteins, such as cAMP- and cGMP-dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.


Subject(s)
Cyclic AMP/chemistry , Cyclic AMP/pharmacology , Cyclic GMP/chemistry , Cyclic GMP/pharmacology , Fluorescent Dyes/chemistry , Ion Channels/agonists , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Ligands , Molecular Docking Simulation , Protein Conformation
19.
J Neurochem ; 154(3): 251-262, 2020 08.
Article in English | MEDLINE | ID: mdl-31883343

ABSTRACT

Ionotropic purinergic receptors (P2X receptors) are non-specific cation channels that are activated by the binding of ATP at their extracellular side. P2X receptors contribute to multiple functions, including the generation of pain, inflammation, or synaptic transmission. The channels are trimers and structural information on several of their isoforms is available. In contrast, the cooperation of the subunits in the activation process is poorly understood. We synthesized a novel fluorescent ATP derivative, 2-[DY-547P1]-AET-ATP (fATP) to unravel the complex activation process in P2X2 and mutated P2X2 H319K channels with enhanced apparent affinity by characterizing the relation between ligand binding and activation gating. fATP is a full agonist with respect to ATP that reports the degree of binding by bright fluorescence. For quantifying the binding, a fast automated algorithm was employed on human embryonic kidney cell culture images. The concentrations of half maximum occupancy and activation as well as the respective Hill coefficients were determined. All Hill coefficients exceeded unity, even at an occupancy <10%, suggesting cooperativity of the binding even for the first and second binding step. fATP shows promise for continuative functional studies on other purinergic receptors and, beyond, any other ATP-binding proteins.


Subject(s)
Adenosine Triphosphate/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Purinergic P2X Receptor Agonists/chemical synthesis , Purinergic P2X Receptor Agonists/metabolism , Receptors, Purinergic P2X2/metabolism , Animals , HEK293 Cells , Humans , Ion Channel Gating/physiology , Ligands , Protein Binding , Rats , Structure-Activity Relationship
20.
Biophys J ; 116(12): 2411-2422, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31130235

ABSTRACT

A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.


Subject(s)
Cyclic AMP/chemistry , Cyclic GMP/chemistry , Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Fluorescent Dyes/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Molecular Docking Simulation , Protein Conformation , Single Molecule Imaging
SELECTION OF CITATIONS
SEARCH DETAIL