Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 21(4): 993-1001, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35192358

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) remains a deadly infectious disease despite existing antiretroviral therapies. A comprehensive understanding of the specific mechanisms of viral infectivity remains elusive and currently limits the development of new and effective therapies. Through in-depth proteomic analysis of HIV-1 virions, we discovered the novel post-translational modification of highly conserved residues within the viral matrix and capsid proteins to the dehydroamino acids, dehydroalanine and dehydrobutyrine. We further confirmed their presence by labeling the reactive alkene, characteristic of dehydroamino acids, with glutathione via Michael addition. Dehydroamino acids are rare, understudied, and have been observed mainly in select bacterial and fungal species. Until now, they have not been observed in HIV proteins. We hypothesize that these residues are important in viral particle maturation and could provide valuable insight into HIV infectivity mechanisms.


Subject(s)
HIV-1 , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/analysis , Capsid Proteins/chemistry , Capsid Proteins/genetics , HIV-1/genetics , Humans , Proteomics , Virion
2.
J Virol ; 96(1): e0134921, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34643428

ABSTRACT

HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis (i.e., from the same gag-pol mRNA) than in trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans-delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks" scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. IMPORTANCE HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells, dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in gag-pol mRNAs. Herein, we provide experimental support for a "weighted Goldilocks" scenario for GP incorporation, wherein the virus exploits both random and nonrandom mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.


Subject(s)
Frameshifting, Ribosomal , Gene Expression Regulation, Viral , HIV Infections/virology , HIV-1/physiology , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Humans , Inverted Repeat Sequences , Models, Biological , Nucleic Acid Conformation , RNA Stability , RNA, Viral/chemistry , RNA, Viral/genetics , Virion , Virus Replication
3.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Article in English | MEDLINE | ID: mdl-32059024

ABSTRACT

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Subject(s)
B-Lymphocytes/metabolism , NFATC Transcription Factors/genetics , Animals , B-Lymphocytes/virology , Cell Line , DNA-Binding Proteins/metabolism , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/pathogenicity , Humans , Mice , Promoter Regions, Genetic/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Viral Proteins/metabolism , Virus Activation , Virus Latency
4.
PeerJ ; 6: e5761, 2018.
Article in English | MEDLINE | ID: mdl-30324030

ABSTRACT

Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling toward vertebrates and land plants has limited our understanding of their diversity and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated viral genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.

5.
J Virol ; 90(15): 6906-6917, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27194769

ABSTRACT

UNLABELLED: Human immunodeficiency virus (HIV) replication is strongly dependent upon a programmed ribosomal frameshift. Here we investigate the relationships between the thermodynamic stability of the HIV type 1 (HIV-1) RNA frameshift site stem-loop, frameshift efficiency, and infectivity, using pseudotyped HIV-1 and HEK293T cells. The data reveal a strong correlation between frameshift efficiency and local, but not overall, RNA thermodynamic stability. Mutations that modestly increase the local stability of the frameshift site RNA stem-loop structure increase frameshift efficiency 2-fold to 3-fold in cells. Thus, frameshift efficiency is determined by the strength of the thermodynamic barrier encountered by the ribosome. These data agree with previous in vitro measurements, suggesting that there are no virus- or host-specific factors that modulate frameshifting. The data also indicate that there are no sequence-specific requirements for the frameshift site stem-loop. A linear correlation between Gag-polymerase (Gag-Pol) levels in cells and levels in virions supports the idea of a stochastic virion assembly mechanism. We further demonstrate that the surrounding genomic RNA secondary structure influences frameshift efficiency and that a mutation that commonly arises in response to protease inhibitor therapy creates a functional but inefficient secondary slippery site. Finally, HIV-1 mutants with enhanced frameshift efficiencies are significantly less infectious, suggesting that compounds that increase frameshift efficiency by as little as 2-fold may be effective at suppressing HIV-1 replication. IMPORTANCE: HIV, like many retroviruses, utilizes a -1 programmed ribosomal frameshift to generate viral enzymes in the form of a Gag-Pol polyprotein precursor. Thus, frameshifting is essential for viral replication. Here, we utilized a panel of mutant HIV strains to demonstrate that in cells, frameshifting efficiency is correlated with the stability of the local thermodynamic barrier to ribosomal translocation. Increasing the stability of the frameshift site RNA increases the frameshift efficiency 2-fold to 3-fold. Mutant viruses with increased frameshift efficiencies have significantly reduced infectivity. These data suggest that this effect might be exploited in the development of novel antiviral strategies.


Subject(s)
Frameshift Mutation/genetics , Frameshifting, Ribosomal/genetics , Fusion Proteins, gag-pol/metabolism , HIV Infections/virology , HIV-1/genetics , RNA, Viral/genetics , Virion/physiology , Base Pairing , Base Sequence , Gene Expression Regulation, Viral , HEK293 Cells , HIV Infections/genetics , HIV-1/chemistry , HIV-1/metabolism , Humans , Nucleic Acid Conformation , RNA Stability , RNA, Viral/chemistry , RNA, Viral/metabolism , Virus Assembly , Virus Replication
6.
Front Microbiol ; 6: 1427, 2015.
Article in English | MEDLINE | ID: mdl-26733971

ABSTRACT

Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton.

SELECTION OF CITATIONS
SEARCH DETAIL
...