Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(14): 2482-2486, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37013983

ABSTRACT

Reported here is a photocatalytic strategy for the chemoselective decarboxylative oxygenation of carboxylic acids using Ce(III) catalysts and O2 as the oxidant. By simply changing the base employed, we demonstrate that the selectivity of the reaction can be channeled to favor hydroperoxides or carbonyls, with each class of products obtained in good to excellent yields and high selectivity. Notably, valuable ketones, aldehydes, and peroxides are produced directly from readily available carboxylic acid without additional steps.

2.
J Am Chem Soc ; 144(14): 6532-6542, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35353526

ABSTRACT

Chemical recycling is one of the most promising technologies that could contribute to circular economy targets by providing solutions to plastic waste; however, it is still at an early stage of development. In this work, we describe the first light-driven, acid-catalyzed protocol for chemical recycling of polystyrene waste to valuable chemicals under 1 bar of O2. Requiring no photosensitizers and only mild reaction conditions, the protocol is operationally simple and has also been demonstrated in a flow system. Electron paramagnetic resonance (EPR) investigations and density functional theory (DFT) calculations indicate that singlet oxygen is involved as the reactive oxygen species in this degradation process, which abstracts a hydrogen atom from a tertiary C-H bond, leading to hydroperoxidation and subsequent C-C bond cracking events via a radical process. Notably, our study indicates that an adduct of polystyrene and an acid catalyst might be formed in situ, which could act as a photosensitizer to initiate the formation of singlet oxygen. In addition, the oxidized polystyrene polymer may play a role in the production of singlet oxygen under light.


Subject(s)
Polystyrenes , Singlet Oxygen , Catalysis , Light , Oxidation-Reduction , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry
3.
J Am Chem Soc ; 143(26): 10005-10013, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34160220

ABSTRACT

The oxidative cleavage of C═C double bonds with molecular oxygen to produce carbonyl compounds is an important transformation in chemical and pharmaceutical synthesis. In nature, enzymes containing the first-row transition metals, particularly heme and non-heme iron-dependent enzymes, readily activate O2 and oxidatively cleave C═C bonds with exquisite precision under ambient conditions. The reaction remains challenging for synthetic chemists, however. There are only a small number of known synthetic metal catalysts that allow for the oxidative cleavage of alkenes at an atmospheric pressure of O2, with very few known to catalyze the cleavage of nonactivated alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol for the selective oxidation of alkenes to carbonyls under 1 atm of O2. For the first time, aromatic as well as various nonactivated aliphatic alkenes could be oxidized to afford ketones and aldehydes under clean, mild conditions with a first row, biorelevant metal catalyst. Moreover, the protocol shows a very good functional group tolerance. Mechanistic investigation suggests that Mn-oxo species, including an asymmetric, mixed-valent bis(µ-oxo)-Mn(III,IV) complex, are involved in the oxidation, and the solvent methanol participates in O2 activation that leads to the formation of the oxo species.

4.
Angew Chem Int Ed Engl ; 58(25): 8362-8366, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-30968535

ABSTRACT

We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5-dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical-based, redox pathway involves the homolytic cleavage of H2 , in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.

5.
Chem Commun (Camb) ; 54(83): 11805-11808, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30280153

ABSTRACT

A cyclometalated rhodium complex has been shown to perform highly selective and efficient reduction of aldehydes, deriving the hydrogen from methanol. With methanol as both the solvent and hydrogen donor under mild conditions and an open atmosphere, a wide range of aromatic aldehydes were reduced to the corresponding alcohols, without affecting other functional groups.

6.
J Nat Prod ; 79(9): 2202-10, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27586460

ABSTRACT

Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.


Subject(s)
Guanidines/chemical synthesis , Leishmania infantum/drug effects , Porifera/chemistry , Trypanosoma cruzi/drug effects , Alkaloids/pharmacology , Animals , Guanidines/chemistry , Guanidines/pharmacology , Marine Biology , Molecular Structure , Nitric Oxide/metabolism
7.
Dalton Trans ; 45(14): 6032-43, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26541517

ABSTRACT

A series of homo- and hetero-tri(aryl)boranes incorporating pentafluorophenyl, 3,5-bis(trifluoromethyl)phenyl, and pentachlorophenyl groups, four of which are novel species, have been studied as the acidic component of frustrated Lewis pairs for the heterolytic cleavage of H2. Under mild conditions eight of these will cleave H2; the rate of cleavage depending on both the electrophilicity of the borane and the steric bulk around the boron atom. Electrochemical studies allow comparisons of the electrophilicity with spectroscopic measurements of Lewis acidity for different series of boranes. Discrepancies in the correlation between these two types of measurements, combined with structural characterisation of each borane, reveal that the twist of the aryl rings with respect to the boron-centred trigonal plane is significant from both a steric and electronic perspective, and is an important consideration in the design of tri(aryl)boranes as Lewis acids.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 71(Pt 6): 608-12, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26634717

ABSTRACT

Copper(I) hydride (cuprous hydride, CuH) was the first binary metal hydride to be discovered (in 1844) and is singular in that it is synthesized in solution, at ambient temperature. There are several synthetic paths to CuH, one of which involves reduction of an aqueous solution of CuSO4·5H2O by borohydride ions. The product from this procedure has not been extensively characterized. Using a combination of diffraction methods (X-ray and neutron) and inelastic neutron scattering spectroscopy, we show that the CuH from the borohydride route has the same bulk structure as CuH produced by other routes. Our work shows that the product consists of a core of CuH with a shell of water and that this may be largely replaced by ethanol. This offers the possibility of modifying the properties of CuH produced by aqueous routes.

9.
Inorg Chem ; 53(6): 2963-7, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24571368

ABSTRACT

A structural, spectroscopic, and computational investigation of Stryker's reagent, [HCu{P(C6H5)3}]6, and its isotopomers has provided new insights into the complex. Neutron diffraction shows that the hydrides are best described as edge bridging rather than face bridging. The combination of infrared and inelastic neutron scattering spectroscopies has allowed the location of most of the modes associated with the hydrides and their assignments. The structural and spectroscopic conclusions are supported by the ab initio studies of the complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...