Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
CNS Drugs ; 37(2): 159-180, 2023 02.
Article in English | MEDLINE | ID: mdl-36681939

ABSTRACT

Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.


Subject(s)
Anorexia Nervosa , Ketamine , Humans , Anorexia Nervosa/drug therapy , Anorexia Nervosa/psychology , Receptors, N-Methyl-D-Aspartate , Ketamine/pharmacology , Ketamine/therapeutic use , Zinc/therapeutic use , Brain
2.
Article in English | MEDLINE | ID: mdl-36565983

ABSTRACT

Oral ketamine has shown to be a rapid-acting antidepressant and a potential treatment option for suicidality, however, repeated doses are often required. Objective markers of prolonged treatment response are needed to help individuals and clinicians make informed treatment decisions. This secondary analysis sought to identify objective electrophysiological predictors of both prolonged response and dose sensitivity to low-dose oral ketamine in people with chronic suicidality. Individuals with a Beck Scale for Suicide Ideation total score (BSS) ≥ 6 (N = 29) completed a six-week ketamine treatment, pre-treatment electroencephalography and follow-up assessment of suicidality (four weeks from the final ketamine dose). Prolonged response was observed in 52% of participants (follow-up BSS reduced by 50% or ≤6); nearly half were prolonged non-responders. There was decisive evidence for a predictive Bayesian linear regression model with follow-up BSS score as the response variable and pre-treatment auditory evoked power bands as predictors (theta, alpha and beta frequencies, BF10 = 17,948, R2 = 0.70). A Bayesian one-way ANOVA indicated strong evidence for a model of positive association between auditory evoked power and ketamine dose sensitivity (theta-alpha BF+0 = 108, effect size δ = 1.3, 95% CI 0.5-2.1; high-beta BF+0 = 7.4, δ = 0.8, 95% CI 0.1-1.6). Given auditory evoked power may index serotonin neurotransmission, these results suggest that a prolonged response to ketamine may, in part, be mediated by pre-treatment serotonergic functioning. In addition, the observed beta power differences may arise from GABAergic functioning. These suicidality phenotypes, identifiable by pre-treatment electrophysiology, may aid diagnosis, treatment selection and prediction of prolonged treatment outcome.


Subject(s)
Ketamine , Suicide , Humans , Ketamine/therapeutic use , Bayes Theorem , Antidepressive Agents/therapeutic use , Phenotype , Suicidal Ideation
3.
Psychiatry Res Neuroimaging ; 317: 111369, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34461430

ABSTRACT

Chronic suicidality has been associated with neuronal atrophy in cortico-striato-limbic regions and is thought to be mediated via a glutamatergic imbalance. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been posited to exert anti-suicidal effects by promoting neurogenesis via modulation of glutamatergic transmission. This voxel-based morphometry study examined the effect of ketamine on whole brain grey matter in adults with chronic suicidality. Grey matter in the periaqueductal grey, nucleus accumbens, putamen, caudate, and thalamus was significantly increased following 6 weeks of low dose oral ketamine treatment. These results support the notion that ketamine rapidly enhances synaptic plasticity within striato-limbic regions.


Subject(s)
Ketamine , Suicide , Adult , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Humans , Ketamine/pharmacology , Ketamine/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Suicidal Ideation
4.
Eur J Neurosci ; 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33901325

ABSTRACT

The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.

5.
Neurosci Lett ; 714: 134575, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31693933

ABSTRACT

P2X7 receptors are implicated in the pathophysiology of psychiatric conditions such as depression and bipolar disorder. P2X7 receptors regulate the release of pro-inflammatory cytokines from microglia, and gain-of-function P2X7 mutations may contribute to the neuroinflammation found in affective disorders. However, the role of this receptor in mediating other mental health conditions and aberrant behaviours requires further examination. The current study we investigated the effects of germline genetic deletion of P2xr7 on social and marble burying behaviours in mice throughout the critical adolescent developmental period. Marble burying behaviour is thought to provide a mouse model of obsessive-compulsive disorder (OCD). We also characterised the effects of P2rx7 deletion on aggressive attack behaviour in adult mice and subsequently quantifieded microglial cell densities and c-Fos expression, a marker of neuronal activation. P2rx7 knockout mice displayed reduced OCD-related marble burying behaviour which was most pronounced in late adolescence/early adulthood. P2rx7 knockout mice also exhibited reduced aggressive attack behaviours in adulthood in the resident-intruder test. Reduced aggression in P2xr7 knockout mice did not coincide with changes to microglial cell densities, however c-Fos expression was elevated in the piriform cortex of P2rx7 knockout mice compared to wildtype mice. This study suggests that the P2X7 receptor might serve as a novel target for serenic or anti-OCD therapeutics.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Compulsive Behavior/genetics , Microglia/pathology , Piriform Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Purinergic P2X7/genetics , Territoriality , Animals , Calcium-Binding Proteins/metabolism , Cell Count , Locomotion/genetics , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Obsessive-Compulsive Disorder/genetics
6.
Neurobiol Stress ; 10: 100159, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31193487

ABSTRACT

The synaptic networks in the amygdala have been the subject of intense interest in recent times, primarily because of the role of this structure in emotion. Fear and its extinction depend on the workings of these networks, with particular interest in extinction because of its potential to ameliorate adverse symptoms associated with post-traumatic stress disorder. Here we place emphasis on the extinction networks revealed by recent techniques, and on the probable plasticity properties of their synaptic connections. We use modules of neurons representing each of the principal components identified as involved in extinction. Each of these modules consists of neural networks, containing specific ratios of excitatory and specialized inhibitory neurons as well as synaptic plasticity mechanisms appropriate for the component of the amygdala they represent. While these models can produce dynamic output, here we concentrate on the equilibrium outputs and do not model the details of the plasticity mechanisms. Pavlovian fear conditioning generates a fear memory in the lateral amygdala module that leads to activation of neurons in the basal nucleus fear module but not in the basal nucleus extinction module. Extinction protocols excite infralimbic medial prefrontal cortex neurons (IL) which in turn excite so-called extinction neurons in the amygdala, leading to the release of endocannabinoids from them and an increase in efficacy of synapses formed by lateral amygdala neurons on them. The model simulations show how such a mechanism could explain experimental observations involving the role of IL as well as endocannabinoids in different temporal phases of extinction.

7.
Brain Behav Immun ; 80: 889-899, 2019 08.
Article in English | MEDLINE | ID: mdl-31158497

ABSTRACT

Few animal models exist that successfully reproduce several core associative and non-associative behaviours relevant to post-traumatic stress disorder (PTSD), such as long-lasting fear reactions, hyperarousal, and subtle attentional and cognitive dysfunction. As such, these models may lack the face validity required to adequately model pathophysiological features of PTSD such as CNS grey matter loss and neuroinflammation. Here we aimed to investigate in a mouse model of PTSD whether contextual fear conditioning associated with a relatively high intensity footshock exposure induces loss of neuronal dendritic spines in various corticolimbic brain regions, as their regression may help explain grey matter reductions in PTSD patients. Further, we aimed to observe whether these changes were accompanied by alterations in microglial cell number and morphology, and increased expression of complement factors implicated in the mediation of microglial cell-mediated engulfment of dendritic spines. Adult male C57Bl6J mice were exposed to a single electric footshock and subsequently underwent phenotyping of various PTSD-relevant behaviours in the short (day 2-4) and longer-term (day 29-31). 32 days post-exposure the brains of these animals were subjected to Golgi staining of dendritic spines, microglial cell Iba-1 immunohistochemistry and immunofluorescent staining of the complement factors C1q and C4. Shock exposure promoted a lasting contextual fear response, decreased locomotor activity, exaggerated acoustic startle responses indicative of hyperarousal, and a short-term facilitation of sensorimotor gating function. The shock triggered loss of dendritic spines on pyramidal neurons was accompanied by increased microglial cell number and complexity in the medial prefrontal cortex and dorsal hippocampus, but not in the amygdala. Shock also increased expression of C1q in the pyramidal layer of the CA1 region of the hippocampus but not in other brain regions. The present study further elaborates on the face and construct validity of a mouse model of PTSD and provides a good foundation to explore potential molecular interactions between microglia and dendritic spines.


Subject(s)
Dendritic Spines/metabolism , Microglia/metabolism , Stress Disorders, Post-Traumatic/metabolism , Amygdala/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Fear/physiology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Reflex, Startle , Stress Disorders, Post-Traumatic/physiopathology , Temporal Lobe/metabolism
8.
Schizophr Bull ; 45(2): 339-349, 2019 03 07.
Article in English | MEDLINE | ID: mdl-29566220

ABSTRACT

One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.


Subject(s)
Amygdala , Cerebral Cortex , Complement C4/metabolism , Dendritic Spines/pathology , Microglia/metabolism , Neuregulin-1/deficiency , Resilience, Psychological , Stress, Psychological , Amygdala/metabolism , Amygdala/pathology , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parvalbumins/metabolism , Random Allocation , Stress, Psychological/metabolism , Stress, Psychological/pathology
9.
Brain Connect ; 8(5): 299-310, 2018 06.
Article in English | MEDLINE | ID: mdl-29758994

ABSTRACT

Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment (CM) because they are thought to reflect coordinated maturation of distinct gray matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion-weighted and resting-state functional imaging was also acquired from a random subset of participants (n = 62). Ten study-specific SCNs were identified using a whole-brain gray matter independent component analysis. The effects of CM and age on average gray matter density and the expression of each SCN were calculated. CM was linked to age-related decreases in gray matter density across an SCN that overlapped with the default mode network (DMN) and frontoparietal network. Resting-state functional connectivity (rsFC) and structural connectivity were calculated in the study-specific SCN and across the whole brain. Gray matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between gray matter covariance and structural connectivity in the nonmaltreated group. A unique association of gray matter covariance with structural connectivity was detected among individuals with a history of CM. Perturbation of gray matter development across the DMN and frontoparietal network following CM may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest that reduced gray matter following CM could arise from deficient functional activity earlier in life.


Subject(s)
Brain Mapping , Child Abuse , Developmental Disabilities/pathology , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Models, Neurological , Neural Pathways , Adolescent , Child , Cohort Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/growth & development , Neural Pathways/pathology , Oxygen/blood , Rest , Surveys and Questionnaires , Young Adult
10.
Psychiatry Res Neuroimaging ; 266: 1-9, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28549317

ABSTRACT

Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects.


Subject(s)
Gray Matter/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
11.
J Psychiatr Res ; 91: 149-155, 2017 08.
Article in English | MEDLINE | ID: mdl-28364595

ABSTRACT

Childhood maltreatment (CM) is associated with enhanced risk of psychiatric illness and reduced subcortical grey matter in adulthood. The hippocampus and amygdala, due to their involvement in stress and emotion circuitries, have been subject to extensive investigations regarding the effect of CM. However, the complex relationship between CM, subcortical grey matter and mental illness remains poorly understood partially due to a lack of longitudinal studies. Here we used segmentation and linear mixed effect modelling to examine the impact of CM on hippocampal and amygdala development in young people with emerging mental illness. A total of 215 structural magnetic resonance imaging (MRI) scans were acquired from 123 individuals (age: 14-28 years, 79 female), 52 of whom were scanned twice or more. Hippocampal and amygdala volumes increased linearly with age, and their developmental trajectories were not moderated by symptom severity. However, exposure to CM was associated with significantly stunted right hippocampal growth. This finding bridges the gap between child and adult research in the field and provides novel evidence that CM is associated with disrupted hippocampal development in youth. Although CM was associated with worse symptom severity, we did not find evidence that CM-induced structural abnormalities directly underpin psychopathology. This study has important implications for the psychiatric treatment of individuals with CM since they are clinically and neurobiologically distinct from their peers who were not maltreated.


Subject(s)
Child Abuse/psychology , Hippocampus/diagnostic imaging , Hippocampus/growth & development , Mental Disorders/pathology , Adolescent , Adult , Amygdala/diagnostic imaging , Amygdala/growth & development , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mental Disorders/therapy , Psychiatric Status Rating Scales , Surveys and Questionnaires , Young Adult
12.
Hum Brain Mapp ; 38(5): 2709-2721, 2017 05.
Article in English | MEDLINE | ID: mdl-28256777

ABSTRACT

Childhood abuse has an enduring impact on the brain's stress system. Whether the effects of childhood abuse and adulthood stress are additive (cumulative stress hypothesis) or interactive (mismatch hypothesis) is widely disputed, however. The primary aim of this study was to test the utility of the cumulative stress and mismatch hypotheses in understanding brain and behaviour. We recruited 64 individuals (aged 14-26) from a specialised clinic for assessment and early intervention of mental health problems in young people. A T1-weighted MRI, a resting state fMRI and clinical assessment were acquired from each participant. Grey matter estimates and resting state functional connectivity (rsFC) of the hippocampus, amygdala and anterior cingulate cortex (ACC) were determined using segmentation and seed-to-voxel rsFC analyses. We explored the effects of childhood abuse and recent stress on the structure and function of the regions of interest within general linear models. Worse psychiatric symptoms were significantly related to higher levels of life time stress. Individuals with mismatched childhood and recent stress levels had reduced left hippocampal volume, reduced ACC-ventrolateral prefrontal cortex rsFC and greater ACC-hippocampus rsFC, compared to individuals with matched childhood and recent stress levels. These results show specific utility of the cumulative stress hypothesis in understanding psychiatric symptomatology and of the mismatch hypothesis in modelling hippocampal grey matter, prefrontal rsFC, and prefrontal-hippocampal rsFC. We provide novel evidence for the enduring impact of childhood abuse on stress reactivity in a clinical population, and demonstrate the distinct effects of stress in different systems. Hum Brain Mapp 38:2709-2721, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Child Abuse/psychology , Mental Disorders/diagnostic imaging , Stress, Psychological/diagnostic imaging , Adolescent , Adult , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Rest , Surveys and Questionnaires , Young Adult
13.
Behav Brain Res ; 319: 148-164, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27867101

ABSTRACT

The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to optimize the potential of these agents to ameliorate symptoms of PTSD four important questions need to be answered: first, what is the identity of the cells that release ECs in the amygdala during extinction; second, what are their sites of action; third, what roles do the ECs play in the alleviation of long- depression (LTD), a process central to extinction; and finally, to what extent does brain derived neurotrophic factor (BDNF) facilitate the release of ECs? A review of the relevant literature is presented in an attempt to answer these questions. It is suggested that the principal cell involved in EC synthesis and release during extinction is the so-called excitatory extinction neuron in the basal nucleus of the amygdala. Furthermore that the main site of action of the ECs is the adjacent calcitonin gene-related peptide inhibitory interneurons, whose normal role of blocking the excitatory neurons is greatly diminished. The molecular pathways leading (during extinction trials) to the synthesis and release of ECs from synaptic spines of extinction neurons, that is potentiated by BDNF, are also delineated in this review. Finally, consideration is given to how the autocrine action of BDNF, linked to the release of ECs, can lead to the sustained release of these, so maintaining extinction over long times.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Brain/physiology , Endocannabinoids/metabolism , Extinction, Psychological/physiology , Fear , Long-Term Synaptic Depression/physiology , Animals , Humans , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/physiopathology
14.
Brain Imaging Behav ; 11(6): 1741-1750, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27812851

ABSTRACT

Affective disorders in young people have been associated with disruptions in circadian rhythms, including abnormalities in secretion of the pineal hormone melatonin. Previous research reports relationships between pineal gland volumes, melatonin secretion, and sleep-wake cycles, but the relationship between these factors has not been explored in affective disorders. This study aimed to characterize these factors and explore associations with mood symptoms and functioning in a sample of young people with affective disorders. Pineal volume from magnetic resonance imaging and melatonin assay from evening dim-light saliva collection were evaluated in 50 individuals (15-30 years old; 72 % female) with bipolar, depressive, or anxiety disorders. Actigraphy monitoring was also conducted for approximately two weeks to derive sleep-wake measures. Pineal volume was associated with melatonin secretion across the evening, replicating previous findings in psychiatrically healthy individuals. Pineal volume was smaller in participants in which melatonin onset was not detected. Timing of melatonin secretion was related to sleep timing, but amount of melatonin and pineal volume were not related to any sleep-wake measures. A shorter phase angle between onset of melatonin secretion and sleep onset was associated with longer total sleep time. Lower melatonin levels were associated with poorer social and occupational functioning. Although pineal volume is not directly related to sleep disturbances or symptoms, melatonin may influence both sleep-wake cycles and functioning in the early stages of affective disorder. Causal links remain to be established, however, treatments that target circadian rhythms may be useful in improving functioning in young people with affective disorders.


Subject(s)
Melatonin/metabolism , Mood Disorders/diagnostic imaging , Mood Disorders/metabolism , Pineal Gland/diagnostic imaging , Actigraphy , Adolescent , Adult , Circadian Rhythm/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mood Disorders/pathology , Organ Size , Photoperiod , Pineal Gland/pathology , Psychiatric Status Rating Scales , Saliva/metabolism , Sleep , Young Adult
15.
Neurosci Biobehav Rev ; 69: 299-312, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27531235

ABSTRACT

Childhood trauma has been associated with long term effects on prefrontal-limbic grey matter. A literature search was conducted to identify structural magnetic resonance imaging studies of adults with a history of childhood trauma. We performed three meta-analyses. Hedges' g effect sizes were calculated for each study providing hippocampal or amygdala volumes of trauma and non-trauma groups. Seed based differential mapping was utilised to synthesise whole brain voxel based morphometry (VBM) studies. A total of 38 articles (17 hippocampus, 13 amygdala, 19 whole brain VBM) were included in the meta-analyses. Trauma cohorts exhibited smaller hippocampus and amygdala volumes bilaterally. The most robust findings of the whole brain VBM meta-analysis were reduced grey matter in the right dorsolateral prefrontal cortex and right hippocampus amongst adults with a history of childhood trauma. Subgroup analyses and meta-regressions showed results were moderated by age, gender, the cohort's psychiatric health and the study's definition of childhood trauma. We provide evidence of abnormal grey matter in prefrontal-limbic brain regions of adults with a history of childhood maltreatment.


Subject(s)
Gray Matter , Adult , Amygdala , Child , Hippocampus , Humans , Magnetic Resonance Imaging
16.
Prog Neurobiol ; 145-146: 1-25, 2016.
Article in English | MEDLINE | ID: mdl-27393370

ABSTRACT

Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations.


Subject(s)
Behavior/physiology , Cerebral Cortex/physiology , Functional Neuroimaging/standards , Neuropsychological Tests/standards , Neuropsychology/standards , Humans
17.
J Neural Eng ; 13(1): 016012, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26678535

ABSTRACT

OBJECTIVE: Functional magnetic resonance imaging blood oxygen level dependent (BOLD) determinations of correlations between 'resting-state' neuronal activity in different regions of cortex have generated much interest. Determination of these correlations requires regressing out signals that are correlated in all parts of the cortex and are taken to be artefactual, such as those due to movement, respiration and cardiovascular activity. However when these are removed there still remains a 'global signal' (GS), which is taken to be of unknown physiological origin, and is regressed out by some researchers but not by others. APPROACH: We have investigated the origin of this GS using cortical models consisting of coupled networks of modules representing regions of interest. MAIN RESULTS: We show that the GS has an amplitude that is linearly related to the average correlation between the modules/voxels in the network over a large range of such correlations. The GS arises as a consequence of feedback between the modules/voxels leading to correlations in their BOLD signals. Given the relationship between the GS and the average correlations it might be anticipated that regressing out the GS during preprocessing will significantly modify the correlations subsequently determined. This is shown to be the case when comparing the connections of individual modules with that predicted by the correlations. SIGNIFICANCE: The present model shows that such correlations can arise as a consequence of the intermodular feedback connectivity without recourse to imposing a GS independent of the connectivity. Our model indicates that the GS reflects the extent of feedback pathways provided by the intermodular/inter-regional connections and hence the average correlation between modules or regions of cortex. However the model has not been used to elucidate the possible contributions of a GS independent of the connectivity, which might indeed contribute to the GS of the cortex.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Nerve Net/physiology , Algorithms , Computer Simulation , Humans , Pattern Recognition, Automated/methods , Reproducibility of Results , Rest/physiology , Sensitivity and Specificity
18.
Brain Struct Funct ; 221(5): 2401-26, 2016 06.
Article in English | MEDLINE | ID: mdl-25985955

ABSTRACT

Evidence is considered as to whether behavioral criteria for diagnosis of post-traumatic stress disorder (PTSD) are applicable to that of traumatized animals and whether the phenomena of acquisition, extinction and reactivation of fear behavior in animals are also successfully applicable to humans. This evidence suggests an affirmative answer in both cases. Furthermore, the deficits in gray matter found in PTSD, determined with magnetic resonance imaging, are also observed in traumatized animals, lending neuropsychological support to the use of animals to probe what has gone awry in PTSD. Such animal experiments indicate that the core synaptic circuitry mediating behavior following trauma consists of the amygdala, ventral-medial prefrontal cortex and hippocampus, all of which are modulated by the basal ganglia. It is not clear if this is the case in PTSD as the observations using fMRI are equivocal and open to technical objections. Nevertheless, the effects of the basal ganglia in controlling glutamatergic synaptic transmission through dopaminergic and serotonergic synaptic mechanisms in the core synaptic circuitry provides a ready explanation for why modifying these mechanisms delays extinction in animal models and predisposes towards PTSD. In addition, changes of brain-derived neurotrophic factor (BDNF) in the core synaptic circuitry have significant effects on acquisition and extinction in animal experiments with single nucleotide polymorphisms in the BDNF gene predisposing to PTSD.


Subject(s)
Brain/physiopathology , Disease Models, Animal , Neurons/physiology , Stress Disorders, Post-Traumatic/physiopathology , Stress, Psychological/physiopathology , Synapses/physiology , Translational Research, Biomedical , Animals , Brain/pathology , Brain-Derived Neurotrophic Factor/metabolism , Conditioning, Classical , Dopaminergic Neurons/physiology , Extinction, Psychological/physiology , Fear/physiology , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Neural Pathways/pathology , Neural Pathways/physiopathology , Polymorphism, Single Nucleotide , Receptors, Dopamine/genetics , Serotonergic Neurons/physiology , Stress Disorders, Post-Traumatic/pathology , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/pathology , Stress, Psychological/psychology , White Matter/pathology , White Matter/physiopathology
19.
PLoS One ; 10(12): e0144796, 2015.
Article in English | MEDLINE | ID: mdl-26659399

ABSTRACT

Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Anesthesia, General , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Cerebrovascular Circulation/physiology , Humans , Nerve Net/cytology , Neurons/cytology , Oxygen/physiology , Rest/physiology , Sleep/physiology
20.
Proc Natl Acad Sci U S A ; 112(13): 4134-9, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775588

ABSTRACT

Measurements of the cortical metabolic rate of glucose oxidation [CMR(glc(ox))] have provided a number of interesting and, in some cases, surprising observations. One is the decline in CMR(glc(ox)) during anesthesia and non-rapid eye movement (NREM) sleep, and another, the inverse relationship between the resting-state CMR(glc(ox)) and the transient following input from the thalamus. The recent establishment of a quantitative relationship between synaptic and action potential activity on the one hand and CMR(glc(ox)) on the other allows neural network models of such activity to probe for possible mechanistic explanations of these phenomena. We have carried out such investigations using cortical models consisting of networks of modules with excitatory and inhibitory neurons, each receiving excitatory inputs from outside the network in addition to intermodular connections. Modules may be taken as regions of cortical interest, the inputs from outside the network as arising from the thalamus, and the intermodular connections as long associational fibers. The model shows that the impulse frequency of different modules can differ from each other by less than 10%, consistent with the relatively uniform CMR(glc(ox)) observed across different regions of cortex. The model also shows that, if correlations of the average impulse rate between different modules decreases, there is a concomitant decrease in the average impulse rate in the modules, consistent with the observed drop in CMR(glc(ox)) in NREM sleep and under anesthesia. The model also explains why a transient thalamic input to sensory cortex gives rise to responses with amplitudes inversely dependent on the resting-state frequency, and therefore resting-state CMR(glc(ox)).


Subject(s)
Anesthesia , Glucose/metabolism , Neurons/physiology , Oxygen/metabolism , Sleep , Action Potentials , Animals , Axons/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Humans , Models, Animal , Models, Neurological , Nerve Net , Poisson Distribution , Synaptic Transmission , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...