Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Stress Health ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37786944

ABSTRACT

Cortisol and heart rate variability (HRV) are well-established biomarkers of the human stress response system. While a relationship between cortisol and HRV is assumed, few studies have found evidence of their correlation within single study designs. One complication for isolating such a relationship may lie in individual variability in the cortisol response to stress such that atypical cortisol responding (i.e., elevated or blunted) occurs. To-date, studies on the cortisol response have employed traditional mean-difference-based approaches to examine average magnitude change in cortisol over time. Alternatively, data-driven trajectory modelling, such as latent growth mixture modelling, may be advantageous for quantifying cortisol based on patterns of response over time. Latent growth mixture modelling was used in N = 386 adults to identify subgroups based on trajectories of cortisol responses to stress. The relationship between cortisol and HRV was tested within subgroups. Results revealed a 'prototypical' subgroup characterised by expected rise and fall in cortisol response to stress (n = 309), a 'decline' subgroup (n = 28) that declined in cortisol after stress, and a 'rise' subgroup (n = 49) that increased in cortisol after stress. Within the 'prototypical' subgroup, greater HRV during stress was associated with decline in cortisol after stress from its maximum (r (306) = 0.19, p < 0.001). This relationship failed to emerge in the 'decline' and 'rise' subgroups (p > 0.271). Results document different patterns of cortisol response to stress; among those who exhibit a 'prototypical' response, changes in HRV during stress are related to changes in cortisol after stress.

2.
Article in English | MEDLINE | ID: mdl-37263417

ABSTRACT

Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and heterogeneous psychiatric condition marked by both exaggerated threat responding and diminished positive affect. While symptom profiles of PTSD differ across individuals, symptoms also vary within individuals over the course of illness. Functional magnetic resonance imaging studies have provided crucial insights into the neurobiology of heightened threat responsivity in PTSD, which has aided in identifying neurobiological risk factors and treatment targets for this disorder. Despite this demonstrated utility, the application of functional magnetic resonance imaging to understanding deficits in reward responsivity in PTSD remains underexplored. Significantly, over 60% of individuals with PTSD experience anhedonia, or an inability to feel pleasure, which may reflect reward processing deficits. To better understand the neural underpinnings of reward deficits and their relevance to the onset, maintenance, and treatment of PTSD, we reviewed the functional magnetic resonance imaging literature through the framework of disease prognosis. Here, we provide insights on whether reward deficits are central to PTSD or are better explained by comorbid major depressive disorder, and we clarify how reward-related deficiencies in PTSD fit into the context of more intensely studied threat-related deficits.


Subject(s)
Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Humans , Emotions , Anhedonia , Reward
3.
Bull Entomol Res ; 113(3): 299-305, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36883790

ABSTRACT

The success of agriculture relies on healthy bees to pollinate crops. Commercially managed pollinators are often kept under temperature-controlled conditions to better control development and optimize field performance. One such pollinator, the alfalfa leafcutting bee, Megachile rotundata, is the most widely used solitary bee in agriculture. Problematically, very little is known about the thermal physiology of M. rotundata or the consequences of artificial thermal regimes used in commercial management practices. Therefore, we took a broad look at the thermal performance of M. rotundata across development and the effects of commonly used commercial thermal regimes on adult bee physiology. After the termination of diapause, we hypothesized thermal sensitivity would vary across pupal metamorphosis. Our data show that bees in the post-diapause quiescent stage were more tolerant of low temperatures compared to bees in active development. We found that commercial practices applied during development decrease the likelihood of a bee recovering from another bout of thermal stress in adulthood, thereby decreasing their resilience. Lastly, commercial regimes applied during development affected the number of days to adult emergence, but the time of day that adults emerged was unaffected. Our data demonstrate the complex interactions between bee development and thermal regimes used in management. This knowledge can help improve the commercial management of these bees by optimizing the thermal regimes used and the timing of their application to alleviate negative downstream effects on adult performance.


Subject(s)
Cold Temperature , Medicago sativa , Bees , Animals , Temperature , Pupa , Metamorphosis, Biological
4.
J Exp Biol ; 225(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35332922

ABSTRACT

Nutrition supports social insect colonies by regulating both individual performance and colony growth. In honey bee colonies, task-related behaviors such as nursing and foraging are partially mediated by nutrition. Young workers (nurses) consume almost all of the pollen in the hive, while foragers consume mostly nectar. Pollen provides vital proteins and lipids, consumed by nurse bees for approximately 1 week post-eclosion. The role that lipids play in the physiology and behavior of adult bees is gaining significant attention. Recent research suggests that diets with balanced ratios of fatty acids increase olfactory learning in honey bees. Olfaction is crucial for young worker bees to perform brood care and cell cleaning behaviors, which is important for hive health and disease control. Thus, we targeted the early adult, pollen-feeding stage to examine how fatty acids affect cognition to hive-relevant odors. We fed young workers (days 0-9) diets balanced or unbalanced in their ratio of essential fatty acids (ω-6:3) sourced from pollen or cooking oils. We then measured their ability to learn healthy and damaged brood odors, as well as their ability to discriminate between the two. Workers fed balanced diets could learn and discriminate between brood odors better than workers fed unbalanced diets. Consumption of both diet types decreased with age, but their cognitive effects remained. These results suggest that diet affects young worker cognitive development, which may affect task-related behaviors and colony hygiene.


Subject(s)
Fatty Acids , Odorants , Animals , Bees , Diet/veterinary , Humans , Plant Nectar , Pollen
5.
J Comp Neurol ; 530(4): 672-682, 2022 03.
Article in English | MEDLINE | ID: mdl-34773646

ABSTRACT

Individual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here, we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age subspecialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than nonsoldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding). As soldiers aged into the less visually demanding task of standing guarding this difference disappeared. Neural investment was otherwise similar across all colony members. Despite having larger task repertoires, soldiers had similar absolute brain size and the smaller relative brain size compared to other workers, meaning that lifetime task repertoire size was a poor predictor of brain size. Both high behavioral specialization in stable environmental conditions and reassignment across task groups during a crisis occur in T. angustula. The differences in neurobiology we report here are consistent with these specialized but flexible defense strategies. This work broadens our understanding of how neurobiology mediates age and morphological task specialization in highly cooperative societies.


Subject(s)
Bees , Behavior, Animal , Animals
6.
Ann Entomol Soc Am ; 114(5): 606-613, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34512859

ABSTRACT

Learning and attention allow animals to better navigate complex environments. While foraging, honey bees (Apis mellifera L.) learn several aspects of their foraging environment, such as color and odor of flowers, which likely begins to happen before they evaluate the quality of the food. If bees begin to evaluate quality before they taste food, and then learn the food is depleted, this may create a conflict in what the bee learns and remembers. Individual honey bees differ in their sensitivity to information, thus creating variation in how they learn or do not learn certain environmental stimuli. For example, foraging honey bees exhibit differences in latent inhibition (LI), a learning process through which regular encounter with a stimulus without a consequence such as food can later reduce conditioning to that stimulus. Here, we test whether bees from distinct selected LI genotypes learn differently if reinforced via just antennae or via both antennae + proboscis. We also evaluate whether learned information goes extinct at different rates in these distinct LI genetic lines. We find that high LI bees learned significantly better when they were reinforced both antenna + proboscis, while low LI and control bees learned similarly with the two reinforcement pathways. We also find no differences in the acquisition and extinction of learned information in high LI and low LI bees. Our work provides insight into how underlying cognition may influence how honey bees learn and value information, which may lead to differences in how individuals and colonies make foraging decisions.

7.
Article in English | MEDLINE | ID: mdl-33201304

ABSTRACT

Associative learning enables animals to predict rewards or punishments by their associations with predictive stimuli, while non-associative learning occurs without reinforcement. The latter includes latent inhibition (LI), whereby animals learn to ignore an inconsequential 'familiar' stimulus. Individual honey bees display heritable differences in expression of LI. We examined the behavioral and neuronal responses between honey bee genetic lines exhibiting high and low LI. We observed, as in previous studies, that high LI lines learned a familiar odor more slowly than low LI bees. By measuring gustatory responses to sucrose, we determined that perception of sucrose reward was similar between both lines, thereby not contributing to the LI phenotype. We then used extracellular electrophysiology to determine differences in neural responses of the antennal lobe (AL) to familiar and novel odors between the lines. Low LI bees responded significantly more strongly to both familiar and novel odors than the high LI bees, but the lines showed equivalent differences in response to the novel and familiar odors. This work suggests that some effects of genotype are present in early olfactory processing, and those effects could complement how LI is manifested at later stages of processing in brains of bees in the different lines.


Subject(s)
Bees/physiology , Animals , Behavior, Animal/physiology , Cognition/physiology , Conditioning, Classical/physiology , Odorants , Olfactory Perception/physiology , Phenotype , Taste Perception/physiology
8.
J Vis Exp ; (143)2019 01 09.
Article in English | MEDLINE | ID: mdl-30688298

ABSTRACT

Existing systems to measure insect emergence patterns have limitations; they are only partially automated and are limited in the maximum number of emerging insects they can detect. In order to obtain precise measurement of insect emergence, it is necessary for systems to be semi-automated and able to measure large numbers of emerging insects. We addressed these issues by designing and building a system that is automated and can measure emergence of up to 1200 insects. We modified the existing "falling-ball" system using Arduino microcontrollers to automate data collection and expand the sample size through multiple data channels. Multiple data channels enable the user to not only increase their sample size, but also allows for multiple treatments to be run simultaneously in a single experiment. Furthermore, we created an R script to automatically visualize the data as a bubble plot, while also calculating the median day and time of emergence. The current system was designed using 3D printing so the user can modify the system to be adjusted for different species of insects. The goal of this protocol is to investigate important questions in chronobiology and stress physiology, using this precise and automated system to measure insect emergence patterns.


Subject(s)
Insecta/physiology , Animals
9.
J Exp Biol ; 221(Pt 10)2018 05 22.
Article in English | MEDLINE | ID: mdl-29636408

ABSTRACT

Photoperiod is considered the universal zeitgeber, regulating physiological processes in numerous animals. However, for animals in light-restricted habitats (e.g. burrows or cavities), thermoperiod may be a more important cue. Our study tested this hypothesis in the alfalfa leafcutting bee, Megachile rotundata, which nests in cavities and undergoes development within a brood cell. We assessed the role of environmental cues (thermoperiod and photoperiod) on the process of adult emergence by examining: (1) whether those cues direct circadian rhythms, (2) which cue is more dominant and (3) how sensitive developing bees and emergence-ready adults are to cues. Although we found that 20% of light penetrates the brood cell, and bees respond to photoperiod by synchronizing emergence, thermoperiod is the dominant cue. When presented with a conflicting zeitgeber, bees entrained to the thermophase instead of the photophase. When temperature cues were removed, we observed free-running of emergence, indicating that underlying circadian mechanisms can be synchronized by daily fluctuations in temperature. We also found that emerging bees were highly sensitive to even small increases in temperature, entraining to a ramp speed of 0.33°C h-1 The response and sensitivity to temperature cues suggest that M. rotundata evolved a temperature-mediated clock to time emergence from light-restricted cavities.


Subject(s)
Bees/growth & development , Circadian Rhythm , Photoperiod , Temperature , Animals , Bees/physiology , Cues , Larva/growth & development , Larva/physiology , Pupa/growth & development , Pupa/physiology
10.
Physiol Biochem Zool ; 88(5): 508-20, 2015.
Article in English | MEDLINE | ID: mdl-26658248

ABSTRACT

Metamorphosis is an important developmental stage for holometabolous insects, during which adult morphology and physiology are established. Proper development relies on optimal body temperatures, and natural ambient temperature (Ta) fluctuations, especially in spring or in northern latitudes, could result in interruptions to development. It is unclear how low-Ta exposure may affect insects that are actively developing. To understand how suboptimal Ta may affect metamorphosing insects, we used the alfalfa leafcutting bee, Megachile rotundata (Fabricius), a solitary, cavity-nesting bee that spends its juvenile and pupal stages within a brood cell. We characterized suites of physiological traits, rather than just using a singular parameter to determine effects of sublethal Ta stress. Metamorphosing M. rotundata were exposed to either constant or fluctuating low-Ta stress and compared to control bees allowed to develop normally. All bees survived and emerged as adults, but the constant low-Ta-stressed bees were affected most severely. Male constant low-Ta-stressed bees had decreased flight performance (lower metabolic rate, shorter flight bouts, decreased wing length), suggesting that the stress altered muscular or neurological development. Constant low-Ta-stressed bees also had altered activity levels, providing more support for the hypothesis that low-Ta stress causes long-term neurological defects. Exposure to fluctuating low Ta also delayed development time for both sexes; males had decreased adult life span, and both sexes had shortened wings. Together, these results provide evidence for a critical developmental window during metamorphosis and suggest that there may be severe implications for bees in the wild that are exposed to low-Ta stressors.


Subject(s)
Bees/growth & development , Cold Temperature , Metamorphosis, Biological/physiology , Animals , Energy Metabolism , Female , Flight, Animal/physiology , Longevity , Male , Pupa/physiology , Stress, Physiological , Wings, Animal/growth & development
11.
J Econ Entomol ; 106(3): 1089-97, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23865171

ABSTRACT

The alfalfa leafcutting bee, Megachile rotundata (F.), is a solitary, cavity-nesting bee and is the primary pollinator for alfalfa seed production. Bee management practices include cold storage during the prepupal stage. Fluctuating thermal regimes during cold storage increases survival of cold storage and allows a doubling of the cold storage period with no decrease in survival. However, survival, characterized as successful adult emergence, is not qualitative. In this study, we determined whether extended storage affects adult bee respiration or flight physiology. We overwintered bees for a single winter (current management protocol) or for 12 mo longer (extended storage). We used resting and tethered flight metabolic rates and resting critical PO2 (the oxygen partial pressure below which metabolism can no longer be sustained) as indices of adult bee quality. We found no significant differences in body mass, resting or flight metabolic rates, or critical PO2 between the two groups. Together these data indicate that extended storage of M. rotundata produces bees of similar respiratory capacity and flight ability. These findings could increase the use of M. rotundata as an alternative pollinator, allowing for extended storage to time adult emergence with early blooming crops.


Subject(s)
Beekeeping/methods , Bees/physiology , Flight, Animal , Oxygen/metabolism , Animals , Bees/growth & development , Energy Metabolism , Estivation , Female , Male , Partial Pressure , Pupa/growth & development , Pupa/physiology , Respiration , Seasons
12.
J Comp Physiol B ; 182(2): 217-30, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21965137

ABSTRACT

Among animals, insects have the highest mass-specific metabolic rates; yet, during intermolt development the tracheal respiratory system cannot meet the increased oxygen demand of older stage insects. Using locomotory performance indices, whole body respirometry, and X-ray imaging to visualize the respiratory system, we tested the hypothesis that due to the rigid exoskeleton, an increase in body mass during the intermolt period compresses the air-filled tracheal system, thereby, reducing oxygen delivery capacity in late stage insects. Specifically, we measured air sac ventilation frequency, size, and compressibility in both the abdomen and femur of early, middle, and late stage sixth instar Schistocerca americana grasshoppers. Our results show that late stage grasshoppers have a reduced air sac ventilation frequency in the femur and decreased convective capacities in the abdomen and femur. We also used X-ray images of the abdomen and femur to calculate the total proportion of tissue dedicated to respiratory structure during the intermolt period. We found that late stage grasshoppers had a lower proportion of their body dedicated to respiratory structures, especially air sacs, which convectively ventilate the tracheal system. These intermolt changes make oxygen delivery more challenging to the tissues, especially critical ones such as the jumping muscle. Indeed, late stage grasshoppers showed reduced jump frequencies compared to early stage grasshoppers, as well as decreased mass-specific CO(2) emission rates at 3 kPa PO(2). Our findings provide a mechanism to explain how body mass changes during the intermolt period reduce oxygen delivery capacity and alter an insect's life history.


Subject(s)
Air Sacs/physiology , Grasshoppers/physiology , Locomotion/physiology , Molting/physiology , Oxygen/metabolism , Respiratory Physiological Phenomena , Air Sacs/diagnostic imaging , Analysis of Variance , Animals , Body Weight , Carbon Dioxide/metabolism , Grasshoppers/growth & development , Larva/physiology , Radiography
13.
Article in English | MEDLINE | ID: mdl-21854865

ABSTRACT

Megachile rotundata (Hymenoptera: Megachilidae), the primary pollinator used in alfalfa seed production, may need to be exposed to low-temperature storage to slow the insects' development to better match spring emergence with the alfalfa bloom. It has been demonstrated that using a fluctuating thermal regime (FTR) improves the tolerance of pupae to low temperatures. Carbon dioxide emission rates were compared between four different FTRs, all with a base temperature of 6°C and a daily high-temperature pulse. Four different high-temperature pulses were examined, 15 or 25°C for 2h and 20°C for 1 or 2h. A subset of pupae at the FTR base temperature of 6°C exhibited continuous gas exchange and, once ramped to 20 or 25°C, shifted to cyclic gas exchange. As temperatures were ramped down from the high-temperature pulse to 6°C, the pupae reverted to continuous gas exchange. The following conclusions about the effect of FTR on the CO(2) emissions of M. rotundata pupae exposed to low-temperature storage during the spring incubation were reached: 1) the high temperature component of the FTR was the best predictor of respiratory pattern; 2) neither pupal body mass nor days in FTR significantly affected which respiratory pattern was expressed during FTRs; 3) cyclic gas exchange was induced only in pupae exposed to temperatures greater than 15°C during the FTR high temperature pulse; and 4) a two hour pulse at 25°C doubled the number of CO(2) peaks observed during the FTR pulse as compared to a two hour pulse at 20°C.


Subject(s)
Bees/physiology , Hymenoptera/physiology , Animals , Body Temperature , Carbon Dioxide/metabolism , Cold Temperature , Hot Temperature , Pupa/physiology , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...