Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Blood ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598835

ABSTRACT

Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase NSD2. A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased NADP(H) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine (SAM), compromising synthesis of creatine from its precursor guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum consistent with impaired utilization of mitochondrial ATP. Accordingly, AK2 suppression increased sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.

2.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405853

ABSTRACT

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

3.
Nat Commun ; 14(1): 7759, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030596

ABSTRACT

Melanomas can adopt multiple transcriptional states. Little is known about the epigenetic drivers of these cell states, limiting our ability to regulate melanoma heterogeneity. Here, we identify stress-induced HDAC8 activity as driving melanoma brain metastasis development. Exposure of melanocytes and melanoma cells to multiple stresses increases HDAC8 activation leading to a neural crest-stem cell transcriptional state and an amoeboid, invasive phenotype that increases seeding to the brain. Using ATAC-Seq and ChIP-Seq we show that increased HDAC8 activity alters chromatin structure by increasing H3K27ac and enhancing accessibility at c-Jun binding sites. Functionally, HDAC8 deacetylates the histone acetyltransferase EP300, causing its enzymatic inactivation. This, in turn, increases binding of EP300 to Jun-transcriptional sites and decreases binding to MITF-transcriptional sites. Inhibition of EP300 increases melanoma cell invasion, resistance to stress and increases melanoma brain metastasis development. HDAC8 is identified as a mediator of transcriptional co-factor inactivation and chromatin accessibility that drives brain metastasis.


Subject(s)
Brain Neoplasms , E1A-Associated p300 Protein , Histone Deacetylases , Melanoma , Humans , Brain Neoplasms/secondary , Chromatin/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Melanocytes/metabolism , Melanoma/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism
4.
Biochem Soc Trans ; 51(5): 1749-1763, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37721138

ABSTRACT

Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.


Subject(s)
Histones , Neoplasms , Humans , Child , Histones/metabolism , Nucleosomes/genetics , Mutation , Neoplasms/genetics , Neoplasms/pathology , Chromatin , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics
5.
Cell Rep ; 42(7): 112823, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37463106

ABSTRACT

Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.


Subject(s)
Head and Neck Neoplasms , Histone-Lysine N-Methyltransferase , Interferon Type I , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Humans , CCAAT-Enhancer-Binding Proteins , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Ubiquitin-Protein Ligases
6.
JCI Insight ; 8(10)2023 04 25.
Article in English | MEDLINE | ID: mdl-37097751

ABSTRACT

Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.


Subject(s)
Folic Acid Antagonists , Mice , Animals , Humans , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Folic Acid Antagonists/chemistry , Enzyme Inhibitors/pharmacology , Drug Resistance , Thymidylate Synthase
7.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36260859

ABSTRACT

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Immunogenicity, Vaccine , Child , Child, Preschool , Humans , Infant , Young Adult , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Treatment Outcome , Adolescent , Adult
9.
Cancer Discov ; 12(1): 186-203, 2022 01.
Article in English | MEDLINE | ID: mdl-34417224

ABSTRACT

Mutations in epigenetic regulators are common in relapsed pediatric acute lymphoblastic leukemia (ALL). Here, we uncovered the mechanism underlying the relapse of ALL driven by an activating mutation of the NSD2 histone methyltransferase (p.E1099K). Using high-throughput drug screening, we found that NSD2-mutant cells were specifically resistant to glucocorticoids. Correction of this mutation restored glucocorticoid sensitivity. The transcriptional response to glucocorticoids was blocked in NSD2-mutant cells due to depressed glucocorticoid receptor (GR) levels and the failure of glucocorticoids to autoactivate GR expression. Although H3K27me3 was globally decreased by NSD2 p.E1099K, H3K27me3 accumulated at the NR3C1 (GR) promoter. Pretreatment of NSD2 p.E1099K cell lines and patient-derived xenograft samples with PRC2 inhibitors reversed glucocorticoid resistance in vitro and in vivo. PRC2 inhibitors restored NR3C1 autoactivation by glucocorticoids, increasing GR levels and allowing GR binding and activation of proapoptotic genes. These findings suggest a new therapeutic approach to relapsed ALL associated with NSD2 mutation. SIGNIFICANCE: NSD2 histone methyltransferase mutations observed in relapsed pediatric ALL drove glucocorticoid resistance by repression of the GR and abrogation of GR gene autoactivation due to accumulation of K3K27me3 at its promoter. Pretreatment with PRC2 inhibitors reversed resistance, suggesting a new therapeutic approach to these patients with ALL.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Enzyme Inhibitors/therapeutic use , Glucocorticoids/therapeutic use , Histone Methyltransferases/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Repressor Proteins/genetics , Cell Line, Tumor/drug effects , Cell Survival , Child , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Female , Glucocorticoids/pharmacology , Humans , Male , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
10.
Clin Cancer Res ; 28(4): 756-769, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34716195

ABSTRACT

PURPOSE: In acute myeloid leukemia (AML), recurrent DNA methyltransferase 3A (DNMT3A) mutations are associated with chemoresistance and poor prognosis, especially in advanced-age patients. Gene-expression studies in DNMT3A-mutated cells identified signatures implicated in deregulated DNA damage response and replication fork integrity, suggesting sensitivity to replication stress. Here, we tested whether pharmacologically induced replication fork stalling, such as with cytarabine, creates a therapeutic vulnerability in cells with DNMT3A(R882) mutations. EXPERIMENTAL DESIGN: Leukemia cell lines, genetic mouse models, and isogenic cells with and without DNMT3A(mut) were used to evaluate sensitivity to nucleoside analogues such as cytarabine in vitro and in vivo, followed by analysis of DNA damage and signaling, replication restart, and cell-cycle progression on treatment and after drug removal. Transcriptome profiling identified pathways deregulated by DNMT3A(mut) expression. RESULTS: We found increased sensitivity to pharmacologically induced replication stress in cells expressing DNMT3A(R882)-mutant, with persistent intra-S-phase checkpoint activation, impaired PARP1 recruitment, and elevated DNA damage, which was incompletely resolved after drug removal and carried through mitosis. Pulse-chase double-labeling experiments with EdU and BrdU after cytarabine washout demonstrated a higher rate of fork collapse in DNMT3A(mut)-expressing cells. RNA-seq studies supported deregulated cell-cycle progression and p53 activation, along with splicing, ribosome biogenesis, and metabolism. CONCLUSIONS: Together, our studies show that DNMT3A mutations underlie a defect in recovery from replication fork arrest with subsequent accumulation of unresolved DNA damage, which may have therapeutic tractability. These results demonstrate that, in addition to its role in epigenetic control, DNMT3A contributes to preserving genome integrity during replication stress. See related commentary by Viny, p. 573.


Subject(s)
DNA Damage , DNA Methyltransferase 3A , DNA Replication , Leukemia, Myeloid, Acute , Animals , DNA Methyltransferase 3A/genetics , DNA Replication/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , Prognosis
11.
Biochim Biophys Acta Mol Cell Res ; 1868(8): 119047, 2021 07.
Article in English | MEDLINE | ID: mdl-33945824

ABSTRACT

The BH-3 mimetic venetoclax overcomes apoptosis and therapy resistance caused by high expression of BCL2 or loss of BH3-only protein function. Although a promising therapy for hematologic malignancies, increased expression of anti-apoptotic MCL-1 or BCL-XL, as well as other resistance mechanisms prevent a durable response to venetoclax. Recent studies demonstrate that agents targeting epigenetic mechanisms such as DNA methyltransferase inhibitors, histone deacetylase (HDAC) inhibitors, histone methyltransferase EZH2 inhibitors, or bromodomain reader protein inhibitors may disable oncogenic gene expression signatures responsible for venetoclax resistance. Combination therapies including venetoclax and epigenetic therapies are effective in preclinical models and the subject of many current clinical trials. Here we review epigenetic strategies to overcome venetoclax resistance mechanisms in hematologic malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Neoplasms/drug therapy , Sulfonamides/pharmacology , Antineoplastic Agents/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/genetics , Humans , Neoplasms/metabolism , Neoplasms/pathology , Sulfonamides/chemistry
12.
Clin Epigenetics ; 13(1): 115, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001289

ABSTRACT

BACKGROUND: Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. MAIN BODY: Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. CONCLUSIONS: Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


Subject(s)
Epigenomics/methods , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Epigenesis, Genetic/immunology , Humans , Neoplasms/genetics
13.
Cancer Discov ; 9(10): 1438-1451, 2019 10.
Article in English | MEDLINE | ID: mdl-31337617

ABSTRACT

By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to promote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements. Taken together, these data demonstrate that mutations in the globular domains of core histones may give rise to an oncogenic program due to nucleosome dysfunction and deregulation of gene expression. SIGNIFICANCE: Mutations in the core histones frequently occur in cancer and represent a new mechanism of epigenetic dysfunction that involves destabilization of the nucleosome, deregulation of chromatin accessibility, and alteration of gene expression to drive cellular transformation.See related commentary by Sarthy and Henikoff, p. 1346.This article is highlighted in the In This Issue feature, p. 1325.


Subject(s)
Histones/genetics , Mutation , Neoplasms/genetics , Oncogenes , Alleles , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Gene Expression , Gene Expression Profiling , Histones/chemistry , Histones/metabolism , Humans , Mutation, Missense , Neoplasms/metabolism , Nucleosomes/metabolism , Protein Multimerization , Yeasts/genetics , Yeasts/metabolism
14.
J Biol Chem ; 294(33): 12459-12471, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248990

ABSTRACT

NSD2 is a histone methyltransferase that specifically dimethylates histone H3 lysine 36 (H3K36me2), a modification associated with gene activation. Dramatic overexpression of NSD2 in t(4;14) multiple myeloma (MM) and an activating mutation of NSD2 discovered in acute lymphoblastic leukemia are significantly associated with altered gene activation, transcription, and DNA damage repair. The partner proteins through which NSD2 may influence critical cellular processes remain poorly defined. In this study, we utilized proximity-based labeling (BioID) combined with label-free quantitative MS to identify high confidence NSD2 interacting partners in MM cells. The top 24 proteins identified were involved in maintaining chromatin structure, transcriptional regulation, RNA pre-spliceosome assembly, and DNA damage. Among these, an important DNA damage regulator, poly(ADP-ribose) polymerase 1 (PARP1), was discovered. PARP1 and NSD2 have been found to be recruited to DNA double strand breaks upon damage and H3K36me2 marks are enriched at damage sites. We demonstrate that PARP1 regulates NSD2 via PARylation upon oxidative stress. In vitro assays suggest the PARylation significantly reduces NSD2 histone methyltransferase activity. Furthermore, PARylation of NSD2 inhibits its ability to bind to nucleosomes and further get recruited at NSD2-regulated genes, suggesting PARP1 regulates NSD2 localization and H3K36me2 balance. This work provides clear evidence of cross-talk between PARylation and histone methylation and offers new directions to characterize NSD2 function in DNA damage response, transcriptional regulation, and other pathways.


Subject(s)
Chromatin/enzymology , Histone-Lysine N-Methyltransferase/metabolism , Multiple Myeloma/enzymology , Neoplasm Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly ADP Ribosylation , Repressor Proteins/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/pathology , DNA Breaks, Double-Stranded , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Proteins/genetics , Oxidative Stress/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Repressor Proteins/genetics
15.
Oncogene ; 38(5): 671-686, 2019 01.
Article in English | MEDLINE | ID: mdl-30171259

ABSTRACT

NSD2, a histone methyltransferase specific for methylation of histone 3 lysine 36 (H3K36), exhibits a glutamic acid to lysine mutation at residue 1099 (E1099K) in childhood acute lymphocytic leukemia (ALL), and cells harboring this mutation can become the predominant clone in relapsing disease. We studied the effects of this mutant enzyme in silico, in vitro, and in vivo using gene edited cell lines. The E1099K mutation altered enzyme/substrate binding and enhanced the rate of H3K36 methylation. As a result, cell lines harboring E1099K exhibit increased H3K36 dimethylation and reduced H3K27 trimethylation, particularly on nucleosomes containing histone H3.1. Mutant NSD2 cells exhibit reduced apoptosis and enhanced proliferation, clonogenicity, adhesion, and migration. In mouse xenografts, mutant NSD2 cells are more lethal and brain invasive than wildtype cells. Transcriptional profiling demonstrates that mutant NSD2 aberrantly activates factors commonly associated with neural and stromal lineages in addition to signaling and adhesion genes. Identification of these pathways provides new avenues for therapeutic interventions in NSD2 dysregulated malignancies.


Subject(s)
Cellular Reprogramming , Histone-Lysine N-Methyltransferase , Mutation, Missense , Neoplasm Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Repressor Proteins , Amino Acid Substitution , HeLa Cells , Heterografts , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism
16.
Annu Rev Pharmacol Toxicol ; 58: 187-207, 2018 01 06.
Article in English | MEDLINE | ID: mdl-28992434

ABSTRACT

Alterations of genes regulating epigenetic processes are frequently found as cancer drivers and may cause widespread alterations of DNA methylation, histone modification patterns, or chromatin structure that disrupt normal patterns of gene expression. Because of the inherent reversibility of epigenetic changes, inhibitors targeting these processes are promising anticancer strategies. Small molecules targeting epigenetic regulators have been developed recently, and clinical trials of these agents are under way for hematologic malignancies and solid tumors. In this review, we describe how the writers, readers, and erasers of epigenetic marks are dysregulated in cancer and summarize the development of therapies targeting these mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Epigenesis, Genetic/drug effects , Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Animals , Humans
17.
FASEB J ; 31(2): 482-490, 2017 02.
Article in English | MEDLINE | ID: mdl-28148777

ABSTRACT

Overexpression of the multiple myeloma set domain (MMSET) Wolf-Hirschhorn syndrome candidate 1 gene, which contains an orphan box H/ACA class small nucleolar RNA, ACA11, in an intron, is associated with several cancer types, including multiple myeloma (MM). ACA11 and MMSET are overexpressed cotranscriptionally as a result of the t(4;14) chromosomal translocation in a subset of patients with MM. RNA sequencing of CD138+ tumor cells from t(4;14)-positive and -negative MM patient bone marrow samples revealed an enhanced oxidative phosphorylation mRNA signature. Supporting these data, ACA11 overexpression in a t(4;14)-negative MM cell line, MM1.S, demonstrated enhanced reactive oxygen species (ROS) levels. In addition, an enhancement of cell proliferation, increased soft agar colony size, and elevated ERK1/2 phosphorylation were observed. This ACA11-driven hyperproliferative phenotype depended on increased ROS levels as exogenously added antioxidants attenuate the increased proliferation. A major transcriptional regulator of the cellular antioxidant response, nuclear factor (erythroid-derived 2)-like 2 (NRF2), shuttled to the nucleus, as expected, in response to ACA11-driven increases in ROS; however, transcriptional up-regulation of some of NRF2's antioxidant target genes was abrogated in the presence of ACA11 overexpression. These data show for the first time that ACA11 promotes proliferation through inhibition of NRF2 function resulting in sustained ROS levels driving cancer cell proliferation.-Mahajan, N., Wu, H.-J., Bennett, R. L., Troche, C., Licht, J. D., Weber, J. D., Maggi, L. B., Jr., Tomasson, M. H. Sabotaging of the oxidative stress response by an oncogenic noncoding RNA.


Subject(s)
Fibroblasts/physiology , Gene Expression Regulation/physiology , Oncogenes/physiology , RNA, Untranslated/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Humans , Mice , Multiple Myeloma/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Untranslated/genetics , Reactive Oxygen Species
18.
Article in English | MEDLINE | ID: mdl-28193767

ABSTRACT

The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cell Transformation, Neoplastic , Gene Expression , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Mice , Mutation , Neoplasms/genetics , PR-SET Domains , Protein Processing, Post-Translational , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins
19.
Blood ; 126(13): 1585-94, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26202421

ABSTRACT

Increased expression of the interferon-inducible double-stranded RNA-activated protein kinase (PKR) has been reported in acute leukemia and solid tumors, but the role of PKR has been unclear. Now, our results indicate that high PKR expression in CD34(+) cells of acute myeloid leukemia (AML) patients correlates with worse survival and shortened remission duration. Significantly, we find that PKR has a novel and previously unrecognized nuclear function to inhibit DNA damage response signaling and double-strand break repair. Nuclear PKR antagonizes ataxia-telangiectasia mutated (ATM) activation by a mechanism dependent on protein phosphatase 2A activity. Thus, inhibition of PKR expression or activity promotes ATM activation, γ-H2AX formation, and phosphorylation of NBS1 following ionizing irradiation. PKR transgenic but not PKR null mice demonstrate a mutator phenotype characterized by radiation-induced and age-associated genomic instability that was partially reversed by short-term pharmacologic PKR inhibition. Furthermore, the age-associated accumulation of somatic mutations that occurs in the Nup98-HOXD13 (NHD13) mouse model of leukemia progression was significantly elevated by co-expression of a PKR transgene, whereas knockout of PKR expression or pharmacologic inhibition of PKR activity reduced the frequency of spontaneous mutations in vivo. Thus, PKR cooperated with the NHD13 transgene to accelerate leukemia progression and shorten survival. Taken together, these results indicate that increased nuclear PKR has an oncogenic function that promotes the accumulation of potentially deleterious mutations. Thus, PKR inhibition may be a therapeutically useful strategy to prevent leukemia progression or relapse, and improve clinical outcomes.


Subject(s)
DNA Repair , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics , eIF-2 Kinase/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , DNA Damage , Enzyme Activation , Gene Expression Regulation, Leukemic , Genomic Instability , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Phosphorylation , Survival Analysis , eIF-2 Kinase/genetics
20.
Neoplasia ; 16(8): 627-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25220590

ABSTRACT

The Nup98-HoxD13 (NHD13) fusion gene was identified in a patient with therapy-related myelodysplastic syndrome (MDS). When transgenically expressed in hematopoietic cells, mice faithfully recapitulate human disease with serial progression from peripheral blood (PB) cytopenias and increased bone marrow (BM) blasts to acute leukemia. It is well accepted that genomic instability in dysplastic hematopoietic stem/progenitor cells (HSPC) drives the evolution of MDS to acute leukemia. Findings here demonstrate that reticulocytes, myeloid and lymphoid PB cells of NHD13 mice, display an increase in the age-associated loss of glycosylphosphatidylinositol-linked surface proteins versus wild type controls. These data correlate with a progressive increase in the DNA damage response as measured by γ-H2AX activity, accumulating BM blasts as the disease progresses and finally development of acute leukemia. These findings clearly demonstrate a state of progressive genomic instability that increases the likelihood of a "second hit" or complimentary mutation later in the disease to trigger development of acute leukemia and underscores the mechanistic nature of how the NUP98-HoxD13 transgene induces progression of MDS to acute leukemia. Additionally, these data support the use of the PIG-A assay as an efficient, real-time surrogate marker of the genomic instability that occurs in the MDS HSPCs. Key Point The PIG-A assay is a sensitive, nonlethal method for the serial assessment of genomic instability in mouse models of MDS.


Subject(s)
Genomic Instability , Membrane Proteins/deficiency , Myelodysplastic Syndromes/genetics , Oncogene Proteins, Fusion/genetics , Animals , Bone Marrow/pathology , CD24 Antigen/metabolism , DNA Damage/genetics , DNA Damage/radiation effects , Disease Models, Animal , Disease Progression , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mutation , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Open Reading Frames , Phenotype , Reticulocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...