Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(14): 6207-6214, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38483208

ABSTRACT

In aqueous pH 7 phosphate buffer, during controlled potential electrolysis (CPE) at -1.10 V vs. Ag|AgCl the literature square planar copper complex, [CuIILEt]BF4 (1), forms a heterogeneous deposit on the glassy carbon working electrode (GCWE) that is a stable and effective hydrogen evolution reaction (HER) electrocatalyst. Specifically, CPE for 20 hours using a small GCWE (A = 0.071 cm2) gave a turnover number (TON) of 364, with ongoing activity. During CPE the brownish-yellow colour of the working solution fades, and a deposit is observed on the small GCWE. Repeating this CPE experiment in a larger cell with a larger GCWE (A = 2.7 cm2), connected to a gas chromatograph, resulted in a TON of 2628 after 2.6 days, with FE = 93%, and with activity ongoing. After this CPE, the working solution had faded to nearly colourless, and visual inspection of the large GCWE showed a material had deposited on the surface. In a 'rinse and repeat test', this heterogeneous deposit was used for further CPE, in a freshly prepared working solution minus fresh catalyst, which resulted in similar ongoing HER activity to before, consistent with the surface deposited material being the active HER catalyst. EDS, PXRD and SEM analysis of this deposit shows that copper and oxygen are the main components present, most likely comprising copper and copper(I) oxide ((Cu2O)n) formed from 1. The use of 1 leads to a deposit that is more catalytically active than that formed when starting with a simple copper salt (control), likely due to it forming a more robustly attached deposit, which also enables the observed long-lived catalytic activity.

2.
ACS Appl Mater Interfaces ; 13(1): 1301-1313, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33351602

ABSTRACT

The successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N3)-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure PEDOT or pure N3-PEDOT, and last, 1:2N3-PEDOT:PEDOT were formed by co-polymerizing a 1:4 mixture of N3-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry. The ratio between the N3 groups, and hence, the number of surface-attached metal complexes after CuAAC functionalization, in pristine N3-PEDOT versus 1:2N3-PEDOT:PEDOT is expected to be 3:1 and seen to be 2.86:1 with a calculated surface coverage of 3.28 ± 1.04 and 1.15 ± 0.09 nmol/cm2, respectively. The conversion, to the metal complex attached films, was lower for the N3-PEDOT films (Ni 74%, Cu 76%) than for the copolymer 1:2N3-PEDOT:PEDOT films (Ni 83%, Cu 91%) due to the former being more sterically congested. The Raman and UV-vis-NIR results were simulated using density functional theory (DFT) and time-dependent DFT (TD-DFT), respectively, and showed good agreement with the experimental data. Importantly, the spectroelectrochemical behavior of both anchored metal complexes is analogous to that of the free metal complexes in solution. This proves that PEDOT films are promising conducting scaffolds for the covalent immobilization of metal complexes, as the existing electrochromic features of the complexes are preserved on immobilization, which is important for applications in electrocatalytic proton and carbon dioxide reduction, optoelectronics, and sensing.

3.
Dalton Trans ; 46(14): 4696-4710, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28332677

ABSTRACT

Four tridentate carbazole-based ligands, HLtBu/H {3,6-di(tert-butyl)-1,8-bis[5-(3-benzyl-1,2,3-triazole)]-9H-carbazole}, HLtBu/tBu {3,6-di(tert-butyl)-1,8-bis[5-(3-(4-tert-butyl)benzyl-1,2,3-triazole)]-9H-carbazole}, HLH/H {1,8-bis[5-(3-benzyl-1,2,3-triazole)]-9H-carbazole} and HLH/tBu {1,8-bis[5-(3-(4-tert-butyl)benzyl-1,2,3-triazole)]-9H-carbazole}, were prepared and complexed with cobalt(ii) tetrafluoroborate. In situ air oxidation resulted in cobalt(iii) complexes 1-4 with the general formula [CoIII(L)2]BF4·xH2O (1: L = LtBu/H, x = 2; 2: L = LtBu/tBu, x = 1; 3: L = LH/H, x = 0.5; 4: L = LH/tBu, x = 2). X-ray structural characterisation confirmed that the four complexes are isostructural, with two orthogonally coordinated deprotonated tridentate ligands providing an octahedral N6-donor set to the cobalt(iii) ion. 1H NMR studies show that this structure is maintained in CDCl3 and DMSO-d6 solution. Cyclic voltammetry on 1-4 in MeCN showed that all of the complexes exhibit two reversible, one-electron oxidation processes (probably due to ligand oxidations), and an irreversible or quasi-reversible reduction process (probably due to reduction of Co(iii) to Co(ii)). As expected, the oxidations move 120-140 mV to lower potentials on adding tert-butyl substituents to the 3 and 6 positions of the carbazole rings, and unsurprisingly the potentials are far less sensitive to the nature of the benzyl ring substituents.

4.
Angew Chem Int Ed Engl ; 55(30): 8680-5, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27295339

ABSTRACT

Understanding how to moderate and improve catalytic activity is critical to improving degradable polymer production. Here, di- and monozinc catalysts, coordinated by bis(imino)diphenylamido ligands, show remarkable activities and allow determination of the factors controlling performance. In most cases, the dizinc catalysts significantly out-perform the monozinc analogs. Further, for the best dizinc catalyst, the ligand conformation controls activity: the catalyst with "folded" ligand conformation shows turnover frequency (TOF) values up to 60 000 h(-1) (0.1 mol % loading, 298 K, [LA]=1 m), whilst that with a "planar" conformation is much slower, under similar conditions (TOF=30 h(-1) ). Dizinc catalysts also perform very well under immortal conditions, showing improved control, and are able to tolerate loadings as low as 0.002 mol % whilst conserving high activity (TOF=12 500 h(-1) ).

5.
Inorg Chem ; 54(24): 11842-51, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26624788

ABSTRACT

The synthesis of three new dizinc(II) complexes bearing a macrocyclic [2 + 2] Schiff base ligand is reported. The bis(anilido)tetraimine macrocycle reacts with diethylzinc to form a bis(ethyl)dizinc(II) complex, [L(Et)Zn2Et2] (1). The reaction of complex 1 with isopropyl alcohol is reported, forming a bis(isopropyl alkoxide)dizinc complex, [L(Et)Zn2((i)PrO)2] (2). Furthermore, complex 1, with 2 equiv of alcohol, is applied as an initiator for racemic lactide ring-opening polymerization. It shows moderately high activity, resulting in a pseudo-first-order rate coefficient of 9.8 × 10(-3) min(-1), with [LA] = 1 M and [initiator] = 5 mM at 25 °C and in a tetrahydrofuran solvent. Polymerization occurs with good control, as evidenced by the linear fit to a plot of molecular weight versus conversion, the narrow dispersities, and the limited transesterification. The same initiating system is inactive for the ring-opening copolymerization of carbon dioxide (CO2) and cyclohexene oxide at 80 °C and 1 bar of CO2 pressure. However, stoichiometric reactions between complex 2 and CO2, at 1 bar pressure, result in the reversible formation of new dizinc carbonate species, [L(Et)Zn2((i)PrO)((i)PrOCO2)] (3a) and [L(Et)Zn2((i)PrOCO2)2] (3b), and the reaction was studied using density functional theory calculations. All of the new complexes, 1-3b, are fully characterized, including NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL