Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Top Curr Chem (Cham) ; 382(3): 28, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141170

ABSTRACT

The enzyme-mimicking nature of versatile nanomaterials proposes a new class of materials categorized as nano-enzymes, ornanozymes. They are artificial enzymes fabricated by functionalizing nanomaterials to generate active sites that can mimic enzyme-like functions. Materials extend from metals and oxides to inorganic nanoparticles possessing intrinsic enzyme-like properties. High cost, low stability, difficulty in separation, reusability, and storage issues of natural enzymes can be well addressed by nanozymes. Since 2007, more than 100 nanozymes have been reported that mimic enzymes like peroxidase, oxidase, catalase, protease, nuclease, hydrolase, superoxide dismutase, etc. In addition, several nanozymes can also exhibit multi-enzyme properties. Vast applications have been reported by exploiting the chemical, optical, and physiochemical properties offered by nanozymes. This review focuses on the reported nanozymes fabricated from a variety of materials along with their enzyme-mimicking activity involving tuning of materials such as metal nanoparticles (NPs), metal-oxide NPs, metal-organic framework (MOF), covalent organic framework (COF), and carbon-based NPs. Furthermore, diverse applications of nanozymes in biomedical research are discussed in detail.


Subject(s)
Nanostructures , Nanostructures/chemistry , Biomedical Research , Enzymes/metabolism , Enzymes/chemistry , Biomimetic Materials/chemistry , Humans , Metal-Organic Frameworks/chemistry
2.
Polym Bull (Berl) ; : 1-50, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36530484

ABSTRACT

Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.

3.
Chemosphere ; 307(Pt 1): 135759, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35870606

ABSTRACT

Enzymes with their environment-friendly nature and versatility have become highly important 'green tools' with a wide range of applications. Enzyme immobilization has further increased the utility and efficiency of these enzymes by improving their stability, reusability, and recyclability. Biomass-derived matrices when used for enzyme immobilization offer a sustainable solution to environmental pollution and fuel depletion at low costs. Biochar and other biomass-derived carbon materials obtained are suitable for the immobilization of enzymes through different immobilization strategies. Environmental pollution has become an utmost topic of research interest due to an ever-increasing trend being observed in anthropogenic activities. This has widely contributed to the release of various toxic effluents into the environment in their native or metabolized forms. Therefore, more focus is being directed toward the utilization of immobilized enzymes in the bioremediation of water and soil, biofuel production, and other environmental applications. In this review, up-to-date literature concerning the immobilization and potential uses of enzymes immobilized on biomass-derived carbon materials has been presented.


Subject(s)
Biofuels , Enzymes, Immobilized , Biomass , Carbon , Enzymes, Immobilized/metabolism , Soil , Water
4.
Adv Colloid Interface Sci ; 297: 102542, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34655931

ABSTRACT

Enzymes have been incorporated into a wide variety of fields and industries as they catalyze many biochemical and chemical reactions. The immobilization of enzymes on carbon nanotubes (CNTs) for generating nano biocatalysts with high stability and reusability is gaining great attention among researchers. Functionalized CNTs act as excellent support for effective enzyme immobilization. Depending on the application, the enzymes can be tailored using the various surface functionalization techniques on the CNTs to extricate the desirable characteristics. Aiming at the preparation of efficient, stable, and recyclable nanobiocatalysts, this review provides an overview of the methods developed to immobilize the various enzymes. Various applications of carbon nanotube-based biocatalysts in water purification, bioremediation, biosensors, and biofuel cells have been comprehensively reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL