Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(3): 4242-4248, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193452

ABSTRACT

Silicon (Si) is made printable by dispersing Si nanoparticles in a single organic solvent. Viscoelastic properties of the prepared inks as well as the uniformity of inkjet-printed thin films are investigated in dependence on the Si volume fraction. It has been demonstrated that no ink additives are needed to completely suppress the occurrence of the coffee ring effect. This is obtained by increasing the ink's volume fraction to induce gelation in order to generate elasticity. The printability of our inks is investigated in terms of Weber, Reynolds, and Ohnesorge numbers and found to be maintained even at high particle loads due to shear-thinning viscosity behavior. When printed onto tungsten (W) substrates, Si inks with ϕ(Si) = 0.4% and ϕ(Si) = 2.1% leave a ring stain after drying, whereas coffee rings are absent for inks with ϕ(Si) = 3.0% and above. The reason for this is a significant ink elasticity achieved by the buildup of a gel network for higher particle loads, which leads to thixotropy-like properties. These are low viscosity for printability and elevated elasticity during ink drying, made possible by a breakup of the gel network during drop formation in conjunction with a rapid network reformation after deposition.

2.
RSC Adv ; 13(51): 36079-36087, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090071

ABSTRACT

In the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis. A number of small molecular cations have been investigated, but compositions containing azetidinium, which is a 4-membered heterocyclic molecular ring, on the A-site have hardly been considered. This study investigates the potential of [(CH2)3NH2]2AgBiBr6 as an optical absorber in photovoltaics or optoelectronics. The use of this alternative cation changes the crystal symmetry significantly. Columns of alternating metal cation form which are separated by the organic ions. While crystal symmetry is rather different from the perovskites, the overall properties as an absorber are similar. It is thus worthwhile to further investigate alternate hybrid compositions which form into other symmetries than the perovskite base structure.

3.
Materials (Basel) ; 14(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832243

ABSTRACT

Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.

4.
RSC Adv ; 10(40): 23653-23661, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517353

ABSTRACT

One of the main challenges for perovskite solar cells (PSC) is their environmental stability, as oxygen and water induced aging may result in mobile decomposition compounds, which can enhance the recombination rate and react with charge carrier extraction layers or the contact metallization. In this contribution the importance of the microstructure of the contact metallization on the environmental cell stability is investigated. For this purpose, the storage stability of inverted planar methylammonium lead iodide (MAPI)-based perovskite solar cells without encapsulation is tested, using the metals aluminum (Al), silver (Ag), gold (Au) and nickel (Ni) as representative cathode materials. For this study, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis of the different electrodes as well as the perovskite is correlated with PSC device current-voltage (J-V) and impedance measurements. Our findings substantiate that the metal microstructure has a significant influence on the PSC aging properties. While a strong perovskite decomposition and iodide diffusion to the contacts were detected for devices using Al, Ag or Au cathodes with a polycrystalline microstructure, these effects were strongly reduced when Ni metallization was employed, where a nanocrystalline microstructure was exhibited under the chosen process conditions.

5.
ACS Appl Mater Interfaces ; 11(40): 37060-37068, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31525020

ABSTRACT

Printing arrays of responsive spots for multiplexed sensing with electrochemical readout requires new molecules and precise, high-throughput deposition of active compounds on microelectrodes with spatial control. We have designed and developed new redox-responsive polymers, featuring a poly(ferrocenylsilane) (PFS) backbone and side groups with disulfide units, which allow an efficient and stable bonding to Au substrates, using sulfur-gold coupling chemistry in a "grafting-to" approach. The polymer molecules can be employed for area selective molecular sensing following their deposition by high-precision inkjet printing. The new PFS derivatives, which serve as "molecular inks", were characterized by 1H NMR, 13C NMR, and FTIR spectroscopies and by gel permeation chromatography. The viscosity and surface tension of the inks were assessed by rheology and pendant drop contact angle measurements, respectively. Commercial microelectrode arrays were modified with the new PFS ink by using inkjet printing in the "drop-on-demand" mode. FTIR spectroscopy, AFM, and EDX-SEM confirmed a successful, spatially localized PFS modification of the individual electrodes within the sensing cells of the microelectrode arrays. The potential application of these devices to act as an electrochemical sensor array was demonstrated with a model analyte, ascorbic acid, by using cyclic voltammetry and amperometric measurements.

6.
ACS Appl Mater Interfaces ; 9(3): 2625-2633, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28032746

ABSTRACT

Semiconductor inks containing an indium-based oxo alkoxide precursor material were optimized regarding rheology requirements for a commercial 10 pL inkjet printhead. The rheological stability is evaluated by measuring the dynamic viscosity of the formulations for 12 h with a constant shear rate stress under ambient conditions. It is believed that the observed superior stability of the inks is the result of effectively suppressing the hydrolysis and condensation reaction between the metal oxo alkoxide precursor complex and atmospheric water. This can be attributed to a strong precursor coordination and the resulting reduction in ligand exchange dynamics of the solvent tetrahydrofurfuryl alcohol which is used as the main solvent in the formulations. It is also shown that with a proper selection of cosolvents, having high polar Hansen solubility parameter values, the inks drop formation properties and wettability can be fine-tuned by maintaining the inks rheological stability. Good drop jetting performance without satellite formation and high drop velocities of 8.25 m/s were found with the support of dimensionless numbers and printability windows. By printing single 10 pL ink dots onto short channel indium-tin-oxide electrodes, In2O3 calcination at 350 °C and a solution-processed back-channel protection, high average saturation mobility of approximately 10 cm2/(V s) are demonstrated in a bottom-contact coplanar thin-film transistor device structure.

SELECTION OF CITATIONS
SEARCH DETAIL