Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 4(4): 421-436, 2020 04.
Article in English | MEDLINE | ID: mdl-31988459

ABSTRACT

Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics/methods , Pharmaceutical Preparations , Pharmacokinetics , Animals , Cisplatin/pharmacokinetics , Drug Design , Humans , In Vitro Techniques , Liver/metabolism , Microfluidics/instrumentation , Models, Biological , Nicotine/pharmacokinetics , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL