Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931917

ABSTRACT

In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.

3.
Adv Drug Deliv Rev ; 178: 113971, 2021 11.
Article in English | MEDLINE | ID: mdl-34530013

ABSTRACT

Immune homeostasis is maintained by a precise balance between effector immune cells and regulatory immune cells. Chronic deviations from immune homeostasis, driven by a greater ratio of effector to regulatory cues, can promote the development and propagation of inflammatory diseases/conditions (i.e., autoimmune diseases, transplant rejection, etc.). Current methods to treat chronic inflammation rely upon systemic administration of non-specific small molecules, resulting in broad immunosuppression with unwanted side effects. Consequently, recent studies have developed more localized and specific immunomodulatory approaches to treat inflammation through the use of local biomaterial-based delivery systems. In particular, this review focuses on (1) local biomaterial-based delivery systems, (2) common materials used for polymeric-delivery systems and (3) emerging immunomodulatory trends used to treat inflammation with increased specificity.


Subject(s)
Homeostasis/drug effects , Immunomodulating Agents/pharmacology , Inflammation/drug therapy , Animals , Homeostasis/immunology , Humans , Immunomodulating Agents/chemistry , Immunomodulation/drug effects , Immunomodulation/immunology , Immunosuppression Therapy , Inflammation/immunology
4.
Obesity (Silver Spring) ; 27(8): 1292-1304, 2019 08.
Article in English | MEDLINE | ID: mdl-31338999

ABSTRACT

OBJECTIVE: A previous genome-wide association study linked overexpression of an ATP-binding cassette transporter, ABCC5, in humans with a susceptibility to developing type 2 diabetes with age. Specifically, ABCC5 gene overexpression was shown to be strongly associated with increased visceral fat mass and reduced peripheral insulin sensitivity. Currently, the role of ABCC5 in diabetes and obesity is unknown. This study reports the metabolic phenotyping of a global Abcc5 knockout mouse. METHODS: A global Abcc5-/- mouse was generated by CRISPR/Cas9. Fat mass was determined by weekly EchoMRI and fat pads were dissected and weighed at week 18. Glucose homeostasis was ascertained by an oral glucose tolerance test, intraperitoneal glucose tolerance test, and intraperitoneal insulin tolerance test. Energy expenditure and locomotor activity were measured using PhenoMaster cages. Glucagon-like peptide 1 (GLP-1) levels in plasma, primary gut cell cultures, and GLUTag cells were determined by enzyme-linked immunosorbent assay. RESULTS: Abcc5-/- mice had decreased fat mass and increased plasma levels of GLP-1, and they were more insulin sensitive and more active. Recombinant overexpression of ABCC5 protein in GLUTag cells decreased GLP-1 release. CONCLUSIONS: ABCC5 protein expression levels are inversely related to fat mass and appear to play a role in the regulation of GLP-1 secretion from enteroendocrine cells.


Subject(s)
Adipose Tissue/metabolism , Glucagon-Like Peptide 1/blood , Insulin Resistance/genetics , Multidrug Resistance-Associated Proteins/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Glucose Tolerance Test , Homeostasis/genetics , Insulin/blood , Male , Mice , Mice, Knockout
5.
Mol Metab ; 6(11): 1419-1428, 2017 11.
Article in English | MEDLINE | ID: mdl-29107289

ABSTRACT

OBJECTIVE: Genetic studies in obese rodents and humans can provide novel insights into the mechanisms involved in energy homeostasis. METHODS: In this study, we genetically mapped the chromosomal region underlying the development of severe obesity in a mouse line identified as part of a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis screen. We characterized the metabolic and behavioral phenotype of obese mutant mice and examined changes in hypothalamic gene expression. In humans, we examined genetic data from people with severe early onset obesity. RESULTS: We identified an obese mouse heterozygous for a missense mutation (pR108W) in orthopedia homeobox (Otp), a homeodomain containing transcription factor required for the development of neuroendocrine cell lineages in the hypothalamus, a region of the brain important in the regulation of energy homeostasis. OtpR108W/+ mice exhibit increased food intake, weight gain, and anxiety when in novel environments or singly housed, phenotypes that may be partially explained by reduced hypothalamic expression of oxytocin and arginine vasopressin. R108W affects the highly conserved homeodomain, impairs DNA binding, and alters transcriptional activity in cells. We sequenced OTP in 2548 people with severe early-onset obesity and found a rare heterozygous loss of function variant in the homeodomain (Q153R) in a patient who also had features of attention deficit disorder. CONCLUSIONS: OTP is involved in mammalian energy homeostasis and behavior and appears to be necessary for the development of hypothalamic neural circuits. Further studies will be needed to investigate the contribution of rare variants in OTP to human energy homeostasis.


Subject(s)
Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Amino Acid Sequence , Animals , Anxiety/metabolism , Base Sequence , Brain/metabolism , Chromosome Mapping , Databases, Genetic , Female , Gene Expression , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox , Homeodomain Proteins/physiology , Humans , Hypothalamus/metabolism , Male , Mice , Nerve Tissue Proteins/physiology , Neurosecretory Systems/metabolism , Obesity/metabolism , Transcription Factors/genetics , Transcriptome/genetics
6.
ACS Biomater Sci Eng ; 3(10): 2267-2277, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-33445286

ABSTRACT

Acrylic bone cements, although successful in the field of orthopedics, suffer from a lack of bioactivity, not truly integrating with surrounding bone. Bioactive fixation is expected to enhance cement performance because of the natural interlocking and bonding with bone, which can improve the augmentative potential of the material in applications such as vertebroplasty (VP). In a recent study, two composite cements (PMMA-hydroxyapatite and PMMA-brushite) showed promising results demonstrating no deterioration in rheological and mechanical properties after CaP filler addition. In this study, the dynamic properties of the cements were investigated in vitro and in vivo. The hypothesis was that these composite cements will provide osseointegration around the implanted cement and increase new bone formation, thus decreasing the risk of bone structural failure. The effects of CaP elution were thus analyzed in vitro using these cements. Mass-loss, pore formation, and mechanical changes were tracked after cement immersion in Hank's salt solution. PMMA-brushite was the only cement with a significant mass loss; however it showed low bulk porosity. Surface porosity increases were observed in both composite cements. Mechanical properties were maintained after cement immersion. In vitro culture studies tested preosteoblast cell viability and differentiation on the cement surface. Cell viability was demonstrated with MTT assay and confirmed on the cement surface. ALP assays showed no inhibition of osteoblast differentiation on the cement surface. In vivo experiments were performed using a rat tibiae model to demonstrate bone ingrowth around the implanted cements. Critical size defects were created and then filled with the cements. The animal studies showed no loss in mechanical strength after implantation and increased bone ingrowth around the composite cements. In summary, the composite cements provided bioactivity without sacrificing mechanical strength.

7.
J Biomater Appl ; 29(5): 688-98, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25085810

ABSTRACT

Calcium phosphate fillers have been shown to increase cement osteoconductivity, but have caused drawbacks in cement properties. Hydroxyapatite and Brushite were introduced in an acrylic two-solution cement at varying concentrations. Novel composite bone cements were developed and characterized using rheology, injectability, and mechanical tests. It was hypothesized that the ample swelling time allowed by the premixed two-solution cement would enable thorough dispersion of the additives in the solutions, resulting in no detrimental effects after polymerization. The addition of Hydroxyapatite and Brushite both caused an increase in cement viscosity; however, these cements exhibited high shear-thinning, which facilitated injection. In gel point studies, the composite cements showed no detectable change in gel point time compared to an all-acrylic control cement. Hydroxyapatite and Brushite composite cements were observed to have high mechanical strengths even at high loads of calcium phosphate fillers. These cements showed an average compressive strength of 85 MPa and flexural strength of 65 MPa. A calcium phosphate-containing cement exhibiting a combination of high viscosity, pseudoplasticity and high mechanical strength can provide the essential bioactivity factor for osseointegration without sacrificing load-bearing capability.


Subject(s)
Bone Cements/chemistry , Durapatite/chemistry , Osseointegration/physiology , Polymethyl Methacrylate/chemistry , Spine/chemistry , Bone Substitutes , Calcium/chemistry , Calcium Phosphates/chemistry , Compressive Strength , Materials Testing/methods , Particle Size , Polymers/chemistry , Pressure , Rheology , Spinal Fractures , Stress, Mechanical , Vertebroplasty , Viscosity , Weight-Bearing
8.
J Immunol ; 176(4): 2337-45, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16455991

ABSTRACT

Previous work has shown that IL-16/CD4 induces desensitization of both CCR5- and CXCR4-induced migration, with no apparent effect on CCR2b or CCR3. To investigate the functional relationship between CD4 and other chemokine receptors, we determined the effects of IL-16 interaction with CD4 on CXCR3-induced migration. In this study we demonstrate that IL-16/CD4 induced receptor desensitization of CXCR3 on primary human T cells. IL-16/CD4 stimulation does not result in surface modulation of CXCR3 or changes in CXCL10 binding affinity. This effect does require p56(lck) enzymatic activity and the presence of CCR5, because desensitization is not transmitted in the absence of CCR5. Treatment of human T cells with methyl-beta-cyclodextrin, a cholesterol chelator, prevented the desensitization of CXCR3 via IL-16/CD4, which was restored after reloading of cholesterol, indicating a requirement for intact cholesterol. These studies demonstrate an intimate functional relationship among CD4, CCR5, and CXCR3, in which CCR5 can act as an adaptor molecule for CD4 signaling. This process of regulating Th1 cell chemoattraction may represent a mechanism for orchestrating cell recruitment in Th1-mediated diseases.


Subject(s)
CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Interleukin-16/pharmacology , Receptors, CCR5/metabolism , Receptors, Chemokine/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Movement , Cells, Cultured , Gene Expression Regulation , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mice , Mice, Knockout , Protein Binding , Receptors, CCR5/deficiency , Receptors, CCR5/genetics , Receptors, CXCR3 , Signal Transduction/drug effects
9.
Nat Genet ; 37(5): 520-5, 2005 May.
Article in English | MEDLINE | ID: mdl-15838507

ABSTRACT

Fraser syndrome is a recessive, multisystem disorder presenting with cryptophthalmos, syndactyly and renal defects and associated with loss-of-function mutations of the extracellular matrix protein FRAS1. Fras1 mutant mice have a blebbed phenotype characterized by intrauterine epithelial fragility generating serous and, later, hemorrhagic blisters. The myelencephalic blebs (my) strain has a similar phenotype. We mapped my to Frem2, a gene related to Fras1 and Frem1, and showed that a Frem2 gene-trap mutation was allelic to my. Expression of Frem2 in adult kidneys correlated with cyst formation in my homozygotes, indicating that the gene is required for maintaining the differentiated state of renal epithelia. Two individuals with Fraser syndrome were homozygous with respect to the same missense mutation of FREM2, confirming genetic heterogeneity. This is the only missense mutation reported in any blebbing mutant or individual with Fraser syndrome, suggesting that calcium binding in the CALXbeta-cadherin motif is important for normal functioning of FREM2.


Subject(s)
Blister/genetics , Extracellular Matrix Proteins/genetics , Medulla Oblongata/pathology , Animals , Eyelids/abnormalities , Genitalia/abnormalities , Humans , Mice , Molecular Sequence Data , Syndactyly/genetics
10.
Nat Genet ; 34(2): 203-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12766769

ABSTRACT

Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.


Subject(s)
Blister/genetics , Denys-Drash Syndrome/genetics , Extracellular Matrix Proteins/genetics , Animals , Base Sequence , Blister/pathology , Chromosomes, Human, Pair 4/genetics , DNA/genetics , DNA Mutational Analysis , Denys-Drash Syndrome/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Molecular Sequence Data , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...