Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 16(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39066286

ABSTRACT

The BK polyomavirus (BKPyV) is a small DNA non-enveloped virus whose infection is asymptomatic in most of the world's adult population. However, in cases of immunosuppression, the reactivation of the virus can cause various complications, and in particular, nephropathies in kidney transplant recipients or hemorrhagic cystitis in bone marrow transplant recipients. Recently, it was demonstrated that BKPyV virions can use extracellular vesicles to collectively traffic in and out of cells, thus exiting producing cells without cell lysis and entering target cells by diversified entry routes. By a comparison to other naked viruses, we investigated the possibility that BKPyV virions recruit the Endosomal-Sorting Complexes Required for Transport (ESCRT) machinery through late domains in order to hijack extracellular vesicles. We identified a single potential late domain in the BKPyV structural proteins, a YPX3L motif in the VP1 protein, and used pseudovirions to study the effect of point mutations found in a BKPyV clinical isolate or known to ablate the interaction of such a domain with the ESCRT machinery. Our results suggest that this domain is not involved in BKPyV association with extracellular vesicles but is crucial for capsomere interaction and thus viral particle assembly.


Subject(s)
Amino Acid Motifs , BK Virus , Capsid Proteins , Extracellular Vesicles , Virion , Virus Assembly , BK Virus/genetics , BK Virus/physiology , BK Virus/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Humans , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , Virion/metabolism , Virion/genetics , Polyomavirus Infections/virology , Polyomavirus Infections/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells
2.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806242

ABSTRACT

BACKGROUND: Bkv-miR-B1-5p is a viral micro-RNA (miRNA) specifically produced during BK polyomavirus (BKPyV) replication. Recent studies have suggested using bkv-miR-B1-5p as a biomarker to monitor viral infection and predict complications in kidney transplant patients. To identify the technical limitations of this miRNA quantification in biological samples, knowledge of its stability and distribution in the extracellular compartment is necessary. Moreover, a proof of concept for using bkv-miR-B1-5p as a biomarker of active replication in chronic infection is still missing in the published literature. METHODS: The stability of bkv-miR-B1-5p was evaluated in samples derived from cell cultures and in urine from BKPyV-infected kidney transplant recipients. The miRNA was quantified in different fractions of the extracellular compartment, including exosomes, and protein binding was evaluated. Finally, we developed an in vitro model for chronic culture of BKPyV clinical isolates to observe changes in the bkv-miR-B1-5p level during persistent infections. RESULTS: Bkv-miR-B1-5p is a stable biomarker in samples from humans and in vitro experiments. Marginally associated with the exosomes, most of the circulating bkv-miR-B1-5p is bound to proteins, especially Ago2, so the miRNA quantification does not require specific exosome isolation. The bkv-miR-B1-5p level is predictable of viral infectivity, which makes it a potential specific biomarker of active BKPyV replication after kidney transplantation.


Subject(s)
BK Virus , Kidney Diseases , Kidney Transplantation , MicroRNAs , Polyomavirus Infections , BK Virus/genetics , Biomarkers , Humans , Kidney Diseases/etiology , Kidney Transplantation/adverse effects , MicroRNAs/genetics , Polyomavirus Infections/genetics , RNA, Viral/genetics , Virus Replication
3.
Viruses ; 12(10)2020 09 26.
Article in English | MEDLINE | ID: mdl-32993049

ABSTRACT

Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.


Subject(s)
Extracellular Vesicles/virology , Immune Evasion/physiology , Polyomavirus Infections/transmission , Polyomavirus/metabolism , Tumor Virus Infections/transmission , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Endocytosis/physiology , Humans , Polyomavirus/immunology , Tumor Virus Infections/virology , Virus Internalization , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL