Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(3): e2549, 2022 04.
Article in English | MEDLINE | ID: mdl-35094462

ABSTRACT

Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help to protect globally significant carbon reserves beneath permafrost layers and provide habitat for many animal species, including forest-dwelling caribou. Many caribou populations are declining, yet the mechanisms by which changing fire regimes could affect caribou declines are poorly understood. We analyzed resource selection of 686 GPS-collared female caribou from three ecotypes and 15 populations in a ~600,000 km2 region of northwest Canada and eastern Alaska. These populations span a wide gradient of fire frequency but experience low levels of human-caused habitat disturbance. We used a mixed-effects modeling framework to characterize caribou resource selection in response to burns at different seasons and spatiotemporal scales, and to test for functional responses in resource selection to burn availability. We also tested mechanisms driving observed selection patterns using burn severity and lichen cover data. Caribou avoided burns more strongly during winter relative to summer and at larger spatiotemporal scales relative to smaller scales. During the winter, caribou consistently avoided burns at both spatiotemporal scales as burn availability increased, indicating little evidence of a functional response. However, they decreased their avoidance of burns during summer as burn availability increased. Burn availability explained more variation in caribou selection for burns than ecotype. Within burns, caribou strongly avoided severely burned areas in winter, and this avoidance lasted nearly 30 years after a fire. Caribou within burns also selected higher cover of terrestrial lichen (an important caribou food source). We found a negative relationship between burn severity and lichen cover, confirming that caribou avoidance of burns was consistent with lower lichen abundance. Consistent winter avoidance of burns and severely burned areas suggests that caribou will experience increasing winter habitat loss as fire frequency and severity increase. Our results highlight the potential for climate-induced alteration of natural disturbance regimes to affect boreal biodiversity through habitat loss. We suggest that management strategies prioritizing protection of core winter range habitat with lower burn probabilities would provide important climate-change refugia for caribou.


Subject(s)
Fires , Reindeer , Animals , Ecosystem , Female , Forests , Reindeer/physiology , Taiga
2.
Mov Ecol ; 9(1): 48, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34551820

ABSTRACT

BACKGROUND: Caribou and reindeer across the Arctic spend more than two thirds of their lives moving in snow. Yet snow-specific mechanisms driving their winter ecology and potentially influencing herd health and movement patterns are not well known. Integrative research coupling snow and wildlife sciences using observations, models, and wildlife tracking technologies can help fill this knowledge void. METHODS: Here, we quantified the effects of snow depth on caribou winter range selection and movement. We used location data of Central Arctic Herd (CAH) caribou in Arctic Alaska collected from 2014 to 2020 and spatially distributed and temporally evolving snow depth data produced by SnowModel. These landscape-scale (90 m), daily snow depth data reproduced the observed spatial snow-depth variability across typical areal extents occupied by a wintering caribou during a 24-h period. RESULTS: We found that fall snow depths encountered by the herd north of the Brooks Range exerted a strong influence on selection of two distinct winter range locations. In winters with relatively shallow fall snow depth (2016/17, 2018/19, and 2019/20), the majority of the CAH wintered on the tundra north of the Brooks Range mountains. In contrast, during the winters with relatively deep fall snow depth (2014/15, 2015/16, and 2017/18), the majority of the CAH caribou wintered in the mountainous boreal forest south of the Brooks Range. Long-term (19 winters; 2001-2020) monitoring of CAH caribou winter distributions confirmed this relationship. Additionally, snow depth affected movement and selection differently within these two habitats: in the mountainous boreal forest, caribou avoided areas with deeper snow, but when on the tundra, snow depth did not trigger significant deep-snow avoidance. In both wintering habitats, CAH caribou selected areas with higher lichen abundance, and they moved significantly slower when encountering deeper snow. CONCLUSIONS: In general, our findings indicate that regional-scale selection of winter range is influenced by snow depth at or prior to fall migration. During winter, daily decision-making within the winter range is driven largely by snow depth. This integrative approach of coupling snow and wildlife observations with snow-evolution and caribou-movement modeling to quantify the multi-facetted effects of snow on wildlife ecology is applicable to caribou and reindeer herds throughout the Arctic.

3.
J Wildl Dis ; 52(2): 327-34, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26967141

ABSTRACT

Carfentanil-xylazine (CX) has been the primary drug combination used for immobilizing free-ranging ungulates in Alaska, US since 1986. We investigated the efficacy of a potential new drug of choice, thiafentanil (Investigational New Animal Drug A-3080). Captive trials indicated that thiafentanil-azaperone-medetomidine could provide good levels of immobilization. However, field trials conducted in October 2013 on free-ranging caribou ( Rangifer tarandus granti) calves showed the combination too potent, causing three respiratory arrests and one mortality. The protocol was revised to thiafentanil-azaperone-xylazine (TAX), with good results. The induction time was not significantly different between the two combinations. However, the recovery time was significantly shorter for the TAX group than for the CX group. A physiologic evaluation was performed on 12 animals immobilized on CX and 15 animals on TAX. Arterial blood was collected after induction and again after 10 min of intranasal oxygen supplements (1 L/min). Both groups had significant increases in partial pressure of arterial oxygen after oxygen treatment. There was a concurrent significant increase in partial pressure of arterial carbon dioxide in both groups. Rectal temperature increased significantly in both groups during the downtime, which is consistent with other studies of potent opioids in ungulates. On the basis of our results, we found TAX to be a potential alternative for the current CX protocol for immobilizing free-ranging caribou calves via helicopter darting.


Subject(s)
Azaperone/pharmacology , Fentanyl/analogs & derivatives , Immobilization/veterinary , Reindeer , Xylazine/pharmacology , Alaska , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Azaperone/administration & dosage , Drug Therapy, Combination , Female , Fentanyl/administration & dosage , Fentanyl/pharmacology , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacology , Xylazine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL