Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 29(6): 907-922, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31985013

ABSTRACT

Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.


Subject(s)
Dyskeratosis Congenita/pathology , Fetal Growth Retardation/pathology , Intellectual Disability/pathology , Microcephaly/pathology , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Pulmonary Fibrosis/pathology , RNA, Ribosomal/biosynthesis , Ribonucleoproteins, Small Nuclear/deficiency , Ribonucleoproteins, Small Nuclear/genetics , Aged , Amino Acid Sequence , Dyskeratosis Congenita/etiology , Female , Fetal Growth Retardation/etiology , Humans , Infant, Newborn , Intellectual Disability/etiology , Male , Microcephaly/etiology , Middle Aged , Nuclear Proteins/chemistry , Pedigree , Promoter Regions, Genetic , Pulmonary Fibrosis/etiology , Ribonucleoproteins, Small Nuclear/chemistry , Sequence Homology , Telomerase/genetics , Transcription, Genetic
2.
EMBO Mol Med ; 11(7): e10201, 2019 07.
Article in English | MEDLINE | ID: mdl-31273937

ABSTRACT

PARN, poly(A)-specific ribonuclease, regulates the turnover of mRNAs and the maturation and stabilization of the hTR RNA component of telomerase. Biallelic PARN mutations were associated with Høyeraal-Hreidarsson (HH) syndrome, a rare telomere biology disorder that, because of its severity, is likely not exclusively due to hTR down-regulation. Whether PARN deficiency was affecting the expression of telomere-related genes was still unclear. Using cells from two unrelated HH individuals carrying novel PARN mutations and a human PARN knock-out (KO) cell line with inducible PARN complementation, we found that PARN deficiency affects both telomere length and stability and down-regulates the expression of TRF1, TRF2, TPP1, RAP1, and POT1 shelterin transcripts. Down-regulation of dyskerin-encoding DKC1 mRNA was also observed and found to result from p53 activation in PARN-deficient cells. We further showed that PARN deficiency compromises ribosomal RNA biogenesis in patients' fibroblasts and cells from heterozygous Parn KO mice. Homozygous Parn KO however resulted in early embryonic lethality that was not overcome by p53 KO. Our results refine our knowledge on the pleiotropic cellular consequences of PARN deficiency.


Subject(s)
Dyskeratosis Congenita/metabolism , Exoribonucleases/deficiency , Fetal Growth Retardation/metabolism , Intellectual Disability/metabolism , Microcephaly/metabolism , RNA, Ribosomal/biosynthesis , Telomere Homeostasis , Telomere/metabolism , Animals , Child, Preschool , Disease Models, Animal , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Exoribonucleases/metabolism , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mice , Mice, Knockout , Microcephaly/genetics , Microcephaly/pathology , RNA, Ribosomal/genetics , Shelterin Complex , Telomere/genetics , Telomere/pathology , Telomere-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...