Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Aging ; 85: 154.e9-154.e11, 2020 01.
Article in English | MEDLINE | ID: mdl-31262553

ABSTRACT

GRN null mutations are among the main genetic causes of frontotemporal dementia through progranulin haploinsufficiency. Most missense mutations are considered not pathogenic. The p.Trp7Arg substitution is localized within the signal peptide domain and no formal evidence for its pathogenicity has yet been provided. We identified the p.Trp7Arg substitution in 3 carriers with low plasma progranulin levels. This evidences that this missense mutation leads to functional haploinsufficiency and should thus be considered pathogenic. Assessing the pathogenicity of variants of unknown significance has significant implications for clinical practice, genetic counseling, and future therapeutic interventions.


Subject(s)
Frontotemporal Dementia/etiology , Haploinsufficiency/genetics , Mutation, Missense , Progranulins/genetics , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , Female , Humans , Male , Middle Aged
2.
Analyst ; 144(21): 6342-6351, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31553333

ABSTRACT

Tau and α-synuclein are central in several neurodegenerative diseases, including Alzheimer Disease (AD), Dementia with Lewy Bodies (DLB) and Parkinson Disease (PD). New analytical methods for precise quantification of cerebrospinal fluid (CSF) levels of both tau and α-synuclein are required to differentiate between dementias or monitor therapeutic responses. Notably, levels of total α-synuclein reported by ELISA are inconsistent among studies, impacted by antibody specificity or lack of standardization. Here, we report on the development and validation of a sensitive and robust mass spectrometry-based assay for the simultaneous quantification of tau and α-synuclein in CSF. The optimized workflow avoided any affinity reagents, and involved the combination of two enzymes, Glu-C and trypsin for optimal sequence coverage of α-synuclein acidic C-terminus. Up to 7 α-synuclein peptides were quantified, including the C-terminal peptide (132-140), resulting in a sequence coverage of 54% in CSF. The lower limits of quantification (LLOQ) ranged from 0.1 ng mL-1 to 1 ng mL-1 depending on the peptide. Regarding CSF tau, 4 peptides common to all isoforms were monitored, and LLOQ ranged from 0.5 ng mL-1 to 0.75 ng mL-1. The multiplex method was successfully applied to CSF samples from AD and DLB patients, two clinically overlapping neurodegenerative diseases. CSF α-synuclein levels were significantly lower in DLB patients compared to AD and controls. Moreover, tau and α-synuclein concentrations showed opposite trends in AD and DLB patients, suggesting the benefit of combining the two biomarkers for differentiation of DLB from AD and controls.


Subject(s)
Alzheimer Disease/diagnosis , Lewy Body Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amino Acid Sequence , Biomarkers/cerebrospinal fluid , Chromatography, Liquid , Diagnosis, Differential , Humans , Peptide Fragments/cerebrospinal fluid , Proteolysis , Serine Endopeptidases/chemistry , Tandem Mass Spectrometry , Trypsin/chemistry , alpha-Synuclein/chemistry , tau Proteins/chemistry
3.
Brain ; 141(1): 72-84, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29228183

ABSTRACT

The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.


Subject(s)
Anticholesteremic Agents/therapeutic use , Mutation/genetics , Oxysterols/blood , Spastic Paraplegia, Hereditary/blood , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Atorvastatin/therapeutic use , Bile Acids and Salts/blood , Child , Cholesterol/blood , Cohort Studies , Cytochrome P450 Family 7/genetics , Deoxycholic Acid/therapeutic use , Female , Humans , Hydroxycholesterols/blood , Infant , Magnetic Resonance Imaging , Male , Middle Aged , Neurologic Examination , ROC Curve , Resveratrol/therapeutic use , Spastic Paraplegia, Hereditary/diagnostic imaging , Steroid Hydroxylases/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL