Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Updates Surg ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954375

ABSTRACT

The relatively recent adoption of Endoscopic Sleeve Gastroplasty (ESG) amongst obese patients has gained approval within the surgical community due to its notable benefits, including significant weight loss, safety, feasibility, repeatability, and potential reversibility. However, despite its promising clinical outcomes and reduced invasiveness, there is still a lack of standardised procedures for performing ESG. Multiple suture patterns and stitching methods have been proposed over time, yet rational tools to quantify and compare their effects on gastric tissues are absent. To address this gap, this study proposed a computational approach. The research involved a case study analyzing three distinct suture patterns (C-shaped, U-shaped and Z-shaped) using a patient-specific computational stomach model generated from magnetic resonance imaging. Simulations mimicked food intake by placing wire features in the intragastric cavity to replicate sutures, followed by applying a linearly increasing internal pressure up to 15 mmHg. The outcomes facilitated comparisons between suture configurations based on pressure-volume behaviours and the distribution of maximum stress on biological tissues, revealing the U-shaped as the more effective in terms of volume reduction, even if with reduced elongation strains and increased tissues stresses, whereas the Z-shaped is responsible of the greatest stomach shortness after ESG. In summary, computational biomechanics methods serve as potent tools in clinical and surgical settings, offering insights into aspects that are challenging to explore in vivo, such as tissue elongation and stress. These methods allow for mechanical comparisons between different configurations, although they might not encompass crucial clinical outcomes.

2.
J Mech Behav Biomed Mater ; 157: 106637, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914036

ABSTRACT

Superficial fascia is a fibrofatty tissue found throughout the body. Initially described in relation to hernias, it has only recently received attention from the scientific community due to new evidence on its role in force transmission and structural integrity of the body. Considering initial difficulties in its anatomical identification, to date, a characterization of the superficial fascia through mechanical tests is still lacking. The mechanical properties of human superficial fasciae of abdominal and thoracic districts (back) of different subjects (n = 4) were then investigated, focusing on anisotropy and viscoelasticity. Experimental tests were performed on samples taken in two perpendicular directions according to body planes (cranio-caudal and latero-medial axes). Data collected from two different uniaxial tensile protocols, failure (i.e., ultimate tensile strength and strain at break, Young's modulus and toughness) and stress-relaxation (i.e., residual stress), were processed and then grouped for statistical analysis. Failure tests confirmed tissue anisotropy, revealing the stiffer nature of the latero-medial direction compared to the cranio-caudal one, for both the districts (with a ratio of the respective Young's moduli close to 2). Furthermore, the thoracic region exhibited significantly greater strength and resultant Young's modulus compared to the abdomen (with greater results along the latero-medial direction, such as 6.13 ± 3.11 MPa versus 0.85 ± 0.39 MPa and 24.87 ± 15.23 MPa versus 3.19 ± 1.62 MPa, respectively). On the contrary, both regions displayed similar strain at break (varying between 38 and 47%), with no clear dependence from the loading directions. Stress-relaxation tests highlighted the viscous behavior of the superficial fascia, with no significant differences in the stress decay between directions and districts (35-38% of residual stress after 300 s). All these collected results represent the starting point for a more in-depth knowledge of the mechanical characterization of the superficial fascia, which can have direct implications in the design, implementation, and effectiveness of site-specific treatments.


Subject(s)
Abdomen , Fascia , Stress, Mechanical , Thorax , Humans , Anisotropy , Biomechanical Phenomena , Abdomen/physiology , Thorax/physiology , Fascia/physiology , Fascia/anatomy & histology , Tensile Strength , Mechanical Phenomena , Male , Viscosity , Mechanical Tests , Female , Materials Testing , Middle Aged , Aged , Elastic Modulus
3.
Biomedicines ; 11(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37509581

ABSTRACT

Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.

4.
Comput Methods Programs Biomed ; 238: 107594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37207463

ABSTRACT

BACKGROUND AND OBJECTIVE: In the field of urology, the pressure-flow study (PFS) is an essential urodynamics practise which requires the patient's transurethral catheterization during the voiding phase of micturition to evaluate the functionality of the lower urinary tract (LUT) and reveal the pathophysiology of its dysfunctionality. However, the literature evidences confusion regarding the interference of the catheterization on the urethral pressure-flow behaviour. METHODS: The present research study represents the first Computational Fluid-Dynamics (CFD) approach to this urodynamics issue, analysing the influence of a catheter in the male LUT through case studies which included the inter-individual and intra-individual dependence. A set of four three dimensional (3D) models of the male LUT, different in urethral diameters, and a set of three 3D models of the transurethral catheter, diverse in calibre, were developed leading to 16 CFD non-catheterized either catheterized configurations, to describe the typical micturition scenario considering both urethra and catheter characteristics. RESULTS: The developed CFD simulations showed that the urine flow field during micturition was influenced by the urethral cross-sectional area and each catheter determined a specific decrease in flow rate if compared to the relative free uroflow. CONCLUSIONS: In-silico methods allow to analyse relevant urodynamics aspects, which could not be investigated in vivo, and may support the clinical PFS to reduce uncertainty on urodynamic diagnosis.


Subject(s)
Urethra , Urinary Bladder , Humans , Male , Urination/physiology , Catheters , Urodynamics/physiology
5.
Comput Methods Programs Biomed ; 231: 107409, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780716

ABSTRACT

BACKGROUND AND OBJECTIVES: Gastro-oesophageal reflux disease (GERD) consists in the passage of gastric acid content from the stomach to the oesophagus, causing burns and deteriorating the quality of life. Laparoscopic Sleeve Gastrectomy (LSG) could induce de novo GERD and worsen pre-existing GERD because of the higher gastric pressurisation, reduction of stomach volume and a wider His-angle. In the proposed work, various computational gastric 2D models were developed to understand the effects of variables such as the His-angle, the antral dimension, and the bolus viscosity on the reflux increase. METHODS: Fluid-Structure Interaction (FSI) computational models which couple the solid mechanics of the gastric wall, and the fluid domain of the bolus, have been developed to shed light on biomechanical aspects of GERD after LSG. A closure was imposed to the lower oesophageal sphincter (LES) mimicking what happens physiologically after food intake. RESULTS: Results showed that the configuration prone to higher reflux flow was the post-surgical 65° model with a staple line starting directly from the pylorus without antral preservation, for all considered viscosities. Increasing viscosity, reflux flow decreased. Post-surgical refluxes were higher than pre-ones and decreased with increasing antrum preservation. CONCLUSIONS: These results could be a starting point for analysis of anatomical features, bariatric surgery and GERD occurrence. Further studies based on 3D geometries need to be performed.


Subject(s)
Gastroesophageal Reflux , Laparoscopy , Obesity, Morbid , Humans , Quality of Life , Obesity, Morbid/complications , Obesity, Morbid/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery , Gastroesophageal Reflux/epidemiology , Gastroesophageal Reflux/etiology , Gastroesophageal Reflux/surgery , Gastrectomy/adverse effects , Gastrectomy/methods , Laparoscopy/methods , Treatment Outcome , Retrospective Studies
6.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36829719

ABSTRACT

Human Fascia Lata (FL) is a connective tissue with a multilayered organization also known as aponeurotic fascia. FL biomechanics is influenced by its composite structure formed by fibrous layers (usually two) separated by loose connective tissue. In each layer, most of the collagen fibers run parallel in a distinct direction (with an interlayer angle that usually ranges from 75-80°), mirroring the fascia's ability to adapt and withstand specific tensile loads. Although FL is a key structure in several musculoskeletal dysfunctions and in tissue engineering, literature still lacks the evidence that proves tissue anisotropy according to predominant collagen fiber directions. For this purpose, this work aims to analyze the biomechanical properties of ex-vivo FL (collected from fresh-frozen human donors) by performing uniaxial tensile tests in order to highlight any differences with respect to loading directions. The experimental outcomes showed a strong anisotropic behavior in accordance with principal collagen fibers directions, which characterize the composite structure. These findings have been implemented to propose a first constitutive model able to mimic the intra- and interlayer interactions. Both approaches could potentially support surgeons in daily practices (such as graft preparation and placement), engineers during in silico simulation, and physiotherapists during musculoskeletal rehabilitation, to customize a medical intervention based on each specific patient and clinical condition.

7.
Bioengineering (Basel) ; 11(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38247919

ABSTRACT

Plantar adipose tissue is a connective tissue whose structural configuration changes according to the foot region (rare or forefoot) and is related to its mechanical role, providing a damping system able to adsorb foot impact and bear the body weight. Considering this, the present work aims at fully describing the plantar adipose tissue's behaviour and developing a proper constitutive formulation. Unconfined compression tests and indentation tests have been performed on samples harvested from human donors and cadavers. Experimental results provided the initial/final elastic modulus for each specimen and assessed the non-linear and time-dependent behaviour of the tissue. The different foot regions were investigated, and the main differences were observed when comparing the elastic moduli, especially the final elastic ones. It resulted in a higher level for the medial region (89 ± 77 MPa) compared to the others (from 51 ± 29 MPa for the heel pad to 11 ± 7 for the metatarsal). Finally, results have been used to define a visco-hyperelastic constitutive model, whose hyperelastic component, which describes tissue non-linear behaviour, was described using an Ogden formulation. The identified and validated tissue constitutive parameters could serve, in the early future, for the computational model of the healthy foot.

8.
J R Soc Interface ; 19(195): 20220311, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36285437

ABSTRACT

In applied biotremology, vibrational signals or cues are exploited to manipulate the target species behaviour. To develop an efficient pest control strategy, other than a detailed investigation into the pest biology and behaviour, the role of the substrate used to transmit the signal is an important feature to be considered, since it may affect vibrations spreading and effective signal transmission and perception. Therefore, we used a multi-disciplinary approach to develop a control technique against the greenhouse whitefly, Trialeurodes vaporariorum. First, an ad hoc vibrational disruptive noise has been developed, based on the acquired knowledge about the mating behaviour and vibrational communication of the mated species. Subsequently, we employed finite-element models to investigate a growing tomato plant response to the aforesaid noise. Modelling how vibrations spread along the plant allowed us to set up a greenhouse experiment to assess the efficacy in terms of insect population of the vibrational treatment, which was administrated through vibrational plates. The green methodology applied in this study represents an innovative, environmentally sound alternative to the usage of synthetic pesticides.


Subject(s)
Hemiptera , Pesticides , Animals , Vibration , Pest Control , Insecta
9.
Ann Biomed Eng ; 50(12): 1911-1922, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35879583

ABSTRACT

Mechanical stimuli are fundamental in the development of organs and tissues, their growth, regeneration or disease. They influence the biochemical signals produced by the cells, and, consequently, the development and spreading of a disease. Moreover, tumour cells are usually characterized by a decrease in the cell mechanical properties that may be directly linked to their metastatic potential. Thus, recently, the experimental and computational study of cell biomechanics is facing a growing interest. Various experimental approaches have been implemented to describe the passive response of cells; however, cell variability and complex experimental procedures may affect the obtained mechanical properties. For this reason, in-silico computational models have been developed through the years, to overcome such limitations, while proposing valuable tools to understand cell mechanical behaviour. This being the case, we propose a combined continuous-tensegrity finite element (FE) model to analyse the mechanical response of a cell and its subcomponents, observing how every part contributes to the overall mechanical behaviour. We modelled both Atomic Force Microscopy (AFM) indentation and micropipette aspiration techniques, as common mechanical tests for cells and elucidated also the role of cell cytoplasm and cytoskeleton in the global cell mechanical response.


Subject(s)
Chondrocytes , Cytoskeleton , Biomechanical Phenomena , Microscopy, Atomic Force , Chondrocytes/physiology , Computer Simulation , Stress, Mechanical , Models, Biological
10.
Surg Endosc ; 36(11): 7998-8011, 2022 11.
Article in English | MEDLINE | ID: mdl-35451669

ABSTRACT

BACKGROUND: Obesity has become a global epidemic. Bariatric surgery is considered the most effective therapeutic weapon in terms of weight loss and improvement of quality of life and comorbidities. Laparoscopic sleeve gastrectomy (LSG) is one of the most performed procedures worldwide, although patients carry a nonnegligible risk of developing post-operative GERD and BE. OBJECTIVES: The aim of this work is the development of computational patient-specific models to analyze the changes induced by bariatric surgery, i.e., the volumetric gastric reduction, the mechanical response of the stomach during an inflation process, and the related elongation strain (ES) distribution at different intragastric pressures. METHODS: Patient-specific pre- and post-surgical models were extracted from Magnetic Resonance Imaging (MRI) scans of patients with morbid obesity submitted to LSG. Twenty-three patients were analyzed, resulting in forty-six 3D-geometries and related computational analyses. RESULTS: A significant difference between the mechanical behavior of pre- and post-surgical stomach subjected to the same internal gastric pressure was observed, that can be correlated to a change in the global stomach stiffness and a minor gastric wall tension, resulting in unusual activations of mechanoreceptors following food intake and satiety variation after LSG. CONCLUSIONS: Computational patient-specific models may contribute to improve the current knowledge about anatomical and physiological changes induced by LSG, aiming at reducing post-operative complications and improving quality of life in the long run.


Subject(s)
Laparoscopy , Obesity, Morbid , Humans , Quality of Life , Biomechanical Phenomena , Gastrectomy/methods , Obesity, Morbid/surgery , Obesity, Morbid/epidemiology , Stomach/surgery , Postoperative Complications/epidemiology , Laparoscopy/methods , Treatment Outcome
11.
Pest Manag Sci ; 77(12): 5498-5508, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34357680

ABSTRACT

BACKGROUND: Many groups of insects utilize substrate-borne vibrations for intraspecific communication. This characteristic makes them a suitable model for exploring the use of vibrations as a tool for pest control as an alternative to the use of chemicals. Detailed knowledge of species communication is a prerequisite to select the best signals to use. This study explored the use of substrate-borne vibrations for pest control of the brown marmorated stink bug (BMSB), Halyomorpha halys Stål (Heteroptera: Pentatomidae). For this purpose, we first identified the spectral and temporal characteristics that best elicit male responsiveness. Bioassays were conducted with artificial signals that mimicked the natural female calling signal. Second, we used the acquired knowledge to synthesize new signals endowed with different degrees of attractiveness in single- and two-choice bioassays using a wooden custom-made T stand. RESULTS: The results from this study showed that males were attracted to female signals along a high range of amplitudes, especially starting from a threshold of 100 µm s-1 , a high pulse repetition time (1 s) and frequency peak corresponding to the first harmonic (76 Hz). This resulted in an "optimal" signal for use to attract males, while the choice test in the T arena showed that this signal elicits searching behavior and attracts BMSB males towards a stimulation point. CONCLUSION: We confirm the use of vibrational signals as a strong tool for behavioral manipulation of male BMSB and suggest its possible use in the development of field traps and further management of this pest. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Heteroptera , Vibration , Animals , Female , Male
12.
Nat Commun ; 11(1): 1182, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132534

ABSTRACT

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system's capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms.


Subject(s)
Bioprinting/methods , Equipment Design/methods , Graphite/chemistry , Lab-On-A-Chip Devices , ets-Domain Protein Elk-1/chemistry , Animals , Cell Culture Techniques/methods , Cell Line , Chick Embryo , Chorioallantoic Membrane , Human Umbilical Vein Endothelial Cells , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Printing, Three-Dimensional , Protein Multimerization , Protein Structure, Quaternary
13.
Interface Focus ; 6(1): 20150060, 2016 Feb 06.
Article in English | MEDLINE | ID: mdl-26855750

ABSTRACT

The combination of high strength and high toughness is a desirable feature that structural materials should display. However, while in the past, engineers had to compromise on either strength or toughness depending on the requested application, nowadays, new toughening strategies are available to provide strong materials with high toughness. In this paper, we focus on one of such strategy, which requires no chemical treatment, but the implementation of slip knots with optimized shape and size in the involved material, which is silkworm silk in this case. In particular, a variety of slip knot topologies with different unfastening mechanisms are investigated, including even complex knots usually used in the textile industry, and their efficiency in enhancing toughness of silk fibres is discussed.

14.
Sci Rep ; 6: 18222, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26868855

ABSTRACT

Knots are fascinating topological elements, which can be found in both natural and artificial systems. While in most of the cases, knots cannot be loosened without breaking the strand where they are tightened, herein, attention is focused on slip or running knots, which on the contrary can be unfastened without compromising the structural integrity of their hosting material. Two different topologies are considered, involving opposite unfastening mechanisms, and their influence on the mechanical properties of natural fibers, as silkworm silk raw and degummed single fibers, is investigated and quantified. Slip knots with optimized shape and size result in a significant enhancement of fibers energy dissipation capability, up to 300-400%, without affecting their load bearing capacity.


Subject(s)
Molecular Conformation , Silk/chemistry , Tensile Strength , Animals , Elastic Modulus , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL