Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566597

ABSTRACT

Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.


Subject(s)
DNA Transposable Elements , Sparrows , Animals , DNA Transposable Elements/genetics , Sparrows/genetics , Sequence Analysis, DNA
2.
J Hered ; 115(2): 221-229, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38305464

ABSTRACT

Island oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history. Here we present a high-quality genome assembly for Q. tomentella, assembled using PacBio HiFi and Omni-C sequencing, developed as part of the California Conservation Genomics Project (CCGP). The resulting assembly has a length of 781 Mb, with a contig N50 of 22.0 Mb and a scaffold N50 of 63.4 Mb. This genome assembly will provide a resource for genomics-informed conservation of this rare oak species. Additionally, this reference genome will be the first one available for a species in Quercus section Protobalanus, a unique oak clade present only in western North America.


Subject(s)
Quercus , Trees , Animals , Humans , Trees/genetics , Genomics , Mexico , North America
3.
J Hered ; 115(3): 317-325, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38401156

ABSTRACT

The Yellow Warbler (Setophaga petechia) is a small songbird in the wood-warbler family (Parulidae) that exhibits phenotypic and ecological differences across a widespread distribution and is important to California's riparian habitat conservation. Here, we present a high-quality de novo genome assembly of a vouchered female Yellow Warbler from southern California. Using HiFi long-read and Omni-C proximity sequencing technologies, we generated a 1.22 Gb assembly including 687 scaffolds with a contig N50 of 6.80 Mb, scaffold N50 of 21.18 Mb, and a BUSCO completeness score of 96.0%. This highly contiguous genome assembly provides an essential resource for understanding the history of gene flow, divergence, and local adaptation in Yellow Warblers and can inform conservation management of this charismatic bird species.


Subject(s)
Genome , Songbirds , Animals , Songbirds/genetics , Female , California , Gene Flow
4.
J Hered ; 114(6): 707-714, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37740386

ABSTRACT

Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California.


Subject(s)
Ascomycota , Lichens , Lichens/genetics , Molecular Sequence Annotation , Genomics , Ascomycota/genetics
5.
J Hered ; 114(6): 690-697, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37688363

ABSTRACT

Snakes in the family Colubridae include more than 2,000 currently recognized species, and comprise roughly 75% of the global snake species diversity on Earth. For such a spectacular radiation, colubrid snakes remain poorly understood ecologically and genetically. Two subfamilies, Colubrinae (788 species) and Dipsadinae (833 species), comprise the bulk of colubrid species richness. Dipsadines are a speciose and diverse group of snakes that largely inhabit Central and South America, with a handful of small-body-size genera that have invaded North America. Among them, the ring-necked snake, Diadophis punctatus, has an incredibly broad distribution with 14 subspecies. Given its continental distribution and high degree of variation in coloration, diet, feeding ecology, and behavior, the ring-necked snake is an excellent species for the study of genetic diversity and trait evolution. Within California, six subspecies form a continuously distributed "ring species" around the Central Valley, while a seventh, the regal ring-necked snake, Diadophis punctatus regalis is a disjunct outlier and Species of Special Concern in the state. Here, we report a new reference genome assembly for the San Diego ring-necked snake, D. p. similis, as part of the California Conservation Genomics Project. This assembly comprises a total of 444 scaffolds spanning 1,783 Mb and has a contig N50 of 8.0 Mb, scaffold N50 of 83 Mb, and BUSCO completeness score of 94.5%. This reference genome will be a valuable resource for studies of the taxonomy, conservation, and evolution of the ring-necked snake across its broad, continental distribution.


Subject(s)
Colubridae , Animals , Colubridae/genetics , Genomics , Genome , North America , Phylogeny
6.
J Hered ; 114(6): 669-680, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37589384

ABSTRACT

We announce the assembly of the first de novo reference genome for the California Scrub-Jay (Aphelocoma californica). The genus Aphelocoma comprises four currently recognized species including many locally adapted populations across Mesoamerica and North America. Intensive study of Aphelocoma has revealed novel insights into the evolutionary mechanisms driving diversification in natural systems. Additional insights into the evolutionary history of this group will require continued development of high-quality, publicly available genomic resources. We extracted high molecular weight genomic DNA from a female California Scrub-Jay from northern California and generated PacBio HiFi long-read data and Omni-C chromatin conformation capture data. We used these data to generate a de novo partially phased diploid genome assembly, consisting of two pseudo-haplotypes, and scaffolded them using inferred physical proximity information from the Omni-C data. The more complete pseudo-haplotype assembly (arbitrarily designated "Haplotype 1") is 1.35 Gb in total length, highly contiguous (contig N50 = 11.53 Mb), and highly complete (BUSCO completeness score = 97%), with comparable scaffold sizes to chromosome-level avian reference genomes (scaffold N50 = 66.14 Mb). Our California Scrub-Jay assembly is highly syntenic with the New Caledonian Crow reference genome despite ~10 million years of divergence, highlighting the temporal stability of the avian genome. This high-quality reference genome represents a leap forward in publicly available genomic resources for Aphelocoma, and the family Corvidae more broadly. Future work using Aphelocoma as a model for understanding the evolutionary forces generating and maintaining biodiversity across phylogenetic scales can now benefit from a highly contiguous, in-group reference genome.


Subject(s)
Genome , Passeriformes , Animals , Female , Phylogeny , Chromosomes , California
7.
J Hered ; 114(5): 549-560, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37395718

ABSTRACT

The Steller's jay is a familiar bird of western forests from Alaska south to Nicaragua. Here, we report a draft reference assembly for the species generated from PacBio HiFi long-read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 352 scaffolds totaling 1.16 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 7.8 Mb, scaffold N50 of 25.8 Mb, and BUSCO completeness score of 97.2%. Repetitive elements span 16.6% of the genome including nearly 90% of the W chromosome. Compared with high-quality assemblies from other members of the family Corvidae, the Steller's jay genome contains a larger proportion of repetitive elements than 4 crow species (Corvus), but a lower proportion of repetitive elements than the California scrub-jay (Aphelocoma californica). This reference genome will serve as an essential resource for future studies on speciation, local adaptation, phylogeography, and conservation genetics in this species of significant biological interest.


Subject(s)
Genome , Passeriformes , Animals , Genomics , Base Sequence , Chromosomes , Sex Chromosomes
8.
J Hered ; 114(6): 681-689, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37493092

ABSTRACT

Rattlesnakes play important roles in their ecosystems by regulating prey populations, are involved in complex coevolutionary dynamics with their prey, and exhibit a variety of unusual adaptations, including maternal care, heat-sensing pit organs, hinged fangs, and medically-significant venoms. The western rattlesnake (Crotalus oreganus) is one of the widest ranging rattlesnake species, with a distribution from British Columbia, where it is listed as threatened, to Baja California and east across the Great Basin to western Wyoming, Colorado and New Mexico. Here, we report a new reference genome assembly for one of six currently recognized subspecies, C. oreganus helleri, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomic sequencing strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 698 scaffolds spanning 1,564,812,557 base pairs, has a contig N50 of 64.7 Mb, a scaffold N50 of 110.8 Mb, and BUSCO complete score of 90.5%. This reference genome will be valuable for studies on the genomic basis of venom evolution and variation within Crotalus, in resolving the taxonomy of C. oreganus and its relatives, and for the conservation and management of rattlesnakes in general.


Subject(s)
Crotalus , Ecosystem , Venomous Snakes , Animals , Mexico , Crotalus/genetics
9.
J Hered ; 114(5): 561-569, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37262429

ABSTRACT

Dittrichia graveolens (L.) Greuter, or stinkwort, is a weedy annual plant within the family Asteraceae. The species is recognized for the rapid expansion of both its native and introduced ranges: in Europe, it has expanded its native distribution northward from the Mediterranean basin by nearly 7 °C latitude since the mid-20th century, while in California and Australia the plant is an invasive weed of concern. Here, we present the first de novo D. graveolens genome assembly (1N = 9 chromosomes), including complete chloroplast (151,013 bp) and partial mitochondrial genomes (22,084 bp), created using Pacific Biosciences HiFi reads and Dovetail Omni-C data. The final primary assembly is 835 Mbp in length, of which 98.1% are represented by 9 scaffolds ranging from 66 to 119 Mbp. The contig N50 is 74.9 Mbp and the scaffold N50 is 96.9 Mbp, which, together with a 98.8% completeness based on the BUSCO embryophyta10 database containing 1,614 orthologs, underscores the high quality of this assembly. This pseudo-molecule-scale genome assembly is a valuable resource for our fundamental understanding of the genomic consequences of range expansion under global change, as well as comparative genomic studies in the Asteraceae.


Subject(s)
Genome , Genomics , Chromosomes , Biological Evolution , Phylogeny
10.
J Hered ; 114(5): 570-579, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37335172

ABSTRACT

Juglans californica, California walnut, is a vulnerable small tree that is locally abundant but restricted to woodland and chaparral habitats of Southern California threatened by urbanization and land use change. This species is the dominant species in a unique woodland ecosystem in California. It is one of 2 endemic California walnut species (family Juglandaceae). The other species, Northern California black walnut (J. hindsii), has been suggested controversially to be a variety of J. californica. Here, we report a new, chromosome-level assembly of J. californica as part of the California Conservation Genomics Project (CCGP). Consistent with the CCGP common methodology across ~150 genomes, we used Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 137 scaffolds spanning 551,065,703 bp, has a contig N50 of 30 Mb, a scaffold N50 of 37 Mb, and BUSCO complete score of 98.9%. Additionally, the mitochondrial genome has 701,569 bp. In addition, we compare this genome with other existing high-quality Juglans and Quercus genomes, which are in the same order (Fagales) and show relatively high synteny within the Juglans genomes. Future work will utilize the J. californica genome to determine its relationship with the Northern California walnut and assess the extent to which these 2 endemic trees might be at risk from fragmentation and/or climate warming.


Subject(s)
Juglans , Juglans/genetics , Ecosystem , Genome , Genomics/methods , California
11.
J Hered ; 114(5): 521-528, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37335574

ABSTRACT

Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.


Subject(s)
Genome , Lizards , Animals , Mexico , Ecosystem , Genomics , Lizards/genetics
12.
J Hered ; 114(4): 385-394, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37195415

ABSTRACT

Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system.


Subject(s)
Odonata , Animals , Odonata/genetics , Ecosystem , Phylogeny , Genomics , Acclimatization
13.
J Hered ; 114(4): 410-417, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37195437

ABSTRACT

Genome assemblies are increasingly being used to identify adaptive genetic variation that can help prioritize the population management of protected species. This approach may be particularly relevant to species like Blainville's horned lizard, Phrynosoma blainvillii, due to its specialized diet on noxious harvester ants, numerous adaptative traits for avoiding predation (e.g. cranial horns, dorsoventrally compressed body, cryptic coloration, and blood squirting from the orbital sinuses), and status as Species of Special Concern in California. Rangewide decline since the early 20th century, the basis of its conservation status, has been driven mainly by habitat conversion, over-collecting, and invasion of a non-native ant that displaces its native ant prey base. Here, we report on a scaffold-level genome assembly for P. blainvillii as part of the California Conservation Genomics Project (CCGP), produced using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology. The de novo assembly has 78 scaffolds, a total length of ~2.21 Gb, a scaffold N50 length of ~352 Mb, and BUSCO score of 97.4%. This is the second species of Phrynosoma for which a reference genome has been assembled and represents a considerable improvement in terms of contiguity and completeness. Combined with the landscape genomics data being compiled by the CCGP, this assembly will help strategize efforts to maintain and/or restore local genetic diversity, where interventions like genetic rescue, translocation, and strategic land preservation may be the only means by which P. blainvillii and other low-vagility species can survive in the fragmented habitats of California.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome , Genomics , Chromosomes , North America
14.
J Hered ; 114(4): 428-435, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37105531

ABSTRACT

The Virginia rail, Rallus limicola, is a member of the family Rallidae, which also includes many other species of secretive and poorly studied wetland birds. It is recognized as a single species throughout its broad distribution in North America where it is exploited as a game bird, often with generous harvest limits, despite a lack of systematic population surveys and evidence of declines in many areas due to wetland loss and degradation. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the Virginia rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.191%. The assembly consists of 1,102 scaffolds spanning 1.39 Gb, with a contig N50 of 11.0 Mb, scaffold N50 of 25.3 Mb, largest contig of 45 Mb, and largest scaffold of 128.4 Mb. It has a high BUSCO completeness score of 96.9% and represents the first genome assembly available for the genus Rallus. This genome assembly will help resolve questions about the complex evolutionary history of rails and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change and habitat loss and fragmentation. It will also provide a valuable resource for rail conservation efforts by quantifying Virginia rail vagility, population connectivity, and effective population sizes.


Subject(s)
Genome , Genomics , Animals , Virginia , Chromosomes , Birds/genetics
15.
J Hered ; 114(4): 395-403, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37042574

ABSTRACT

Climate-driven changes in hydrological regimes are of global importance and are particularly significant in riparian ecosystems. Riparian ecosystems in California provide refuge to many native and vulnerable species within a xeric landscape. California Tetragnatha spiders play a key role in riparian ecosystems, serving as a link between terrestrial and aquatic elements. Their tight reliance on water paired with the widespread distributions of many species make them ideal candidates to better understand the relative role of waterways versus geographic distance in shaping the population structure of riparian species. To assist in better understanding population structure, we constructed a reference genome assembly for Tetragnatha versicolor using long-read sequencing, scaffolded with proximity ligation Omni-C data. The near-chromosome-level assembly is comprised of 174 scaffolds spanning 1.06 Gb pairs, with a scaffold N50 of 64.1 Mb pairs and BUSCO completeness of 97.6%. This reference genome will facilitate future study of T. versicolor population structure associated with the rapidly changing environment of California.


Subject(s)
Ecosystem , Spiders , Animals , Genome , Spiders/chemistry , Spiders/genetics
16.
J Hered ; 114(4): 436-443, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37119047

ABSTRACT

The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due primarily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population connectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change, habitat loss and fragmentation, and disease.


Subject(s)
Birds , Genome , Animals , Birds/genetics , Ecosystem , Genomics , Ecology , Chromosomes
17.
J Hered ; 114(4): 418-427, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36763048

ABSTRACT

The California quail (Callipepla californica) is an iconic native bird of scrub and oak woodlands in California and the Baja Peninsula of Mexico. Here, we report a draft reference assembly for the species generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 321 scaffolds totaling 1.08 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 5.5 Mb, scaffold N50 of 19.4 Mb, and BUSCO completeness score of 96.5%. Transposable elements (TEs) occupy 16.5% of the genome, more than previous Odontophoridae quail assemblies but in line with estimates of TE content for recent long-read assemblies of chicken and Peking duck. Together these metrics indicate that the present assembly is more complete than prior reference assemblies generated for Odontophoridae quail. This reference will serve as an essential resource for studies on local adaptation, phylogeography, and conservation genetics in this species of significant biological and recreational interest.


Subject(s)
Genomics , Quail , Animals , Quail/genetics , Chromosomes , DNA Transposable Elements , California
18.
J Hered ; 114(1): 52-59, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36321765

ABSTRACT

Pricklebacks (Family Stichaeidae) are generally cold-temperate fishes most commonly found in the north Pacific. As part of the California Conservation Genomics Project (CCGP), we sequenced the genome of the Monkeyface Prickleback, Cebidichthys violaceus, to establish a genomic model for understanding phylogeographic patterns of marine organisms in California. These patterns, in turn, may inform the design of marine protected areas using dispersal models based on forthcoming population genomic data. The genome of C. violaceus is typical of many marine fishes at less than 1 Gb (genome size = 575.6 Mb), and our assembly is near-chromosome level (contig N50 = 1 Mb, scaffold N50 = 16.4 Mb, BUSCO completeness = 93.2%). Within the context of the CCGP, the genome will be used as a reference for future whole genome resequencing projects, enhancing our knowledge of the population structure of the species and more generally, the efficacy of marine protected areas as a primary conservation tool across California's marine ecosystems.


Subject(s)
Ecosystem , Perciformes , Animals , Genome , Perciformes/genetics , Fishes/genetics , Genomics , Chromosomes
19.
J Hered ; 114(1): 60-67, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36107748

ABSTRACT

Sculpins (Family Cottidae) are generally cold-temperate intertidal reef fishes most commonly found in the North Pacific. As part of the California Conservation Genomics Project (CCGP), we sequenced the genome of the Woolly Sculpin, Clinocottus analis, to establish a genomic model for understanding phylogeographic structure of inshore marine taxa along the California coast. These patterns, in turn, should further inform the design of marine protected areas using dispersal models based on genomic data. The small genome of C. analis is typical of marine fishes at less than 1 Gb (genome size = 538 Mb), and our assembly is near-chromosome level (contig N50 = 9.1 Mb, scaffold N50 = 21 Mb, BUSCO completeness = 97.9%). Within the context of the CCGP, the Woolly Sculpin genome will be used as a reference for future whole-genome resequencing projects aimed at enhancing our knowledge of the population structure of the species, and efficacy of marine protected areas across the state.


Subject(s)
Perciformes , Animals , Perciformes/genetics , Genomics , Fishes/genetics , Sequence Analysis, DNA , Genome Size , Chromosomes
20.
J Hered ; 113(6): 673-680, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36190478

ABSTRACT

Red abalone, Haliotis rufescens, are herbivorous marine gastropods that primarily feed on kelp. They are the largest and longest-lived of abalone species with a range distribution in North America from central Oregon, United States, to Baja California, MEX. Recently, red abalone have been in decline as a consequence of overharvesting, disease, and climate change, resulting in the closure of the commercial fishery in the 1990s and the recreational fishery in 2018. Protecting this ecologically and economically important species requires an understanding of their current population dynamics and connectivity. Here, we present a new red abalone reference genome as part of the California Conservation Genomics Project (CCGP). Following the CCGP genome strategy, we used Pacific Biosciences HiFi long reads and Dovetail Omni-C data to generate a scaffold-level assembly. The assembly comprises 616 scaffolds for a total size of 1.3 Gb, a scaffold N50 of 45.7 Mb, and a BUSCO complete score of 97.3%. This genome represents a significant improvement over a previous assembly and will serve as a powerful tool for investigating seascape genomic diversity, local adaptation to temperature and ocean acidification, and informing management strategies.


Subject(s)
Gastropoda , Seawater , Animals , Mexico , Hydrogen-Ion Concentration , Gastropoda/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...