Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer J ; 12(8): 122, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995769

ABSTRACT

The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a "viral mimicry" response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.


Subject(s)
Leukemia, Myeloid, Acute , Decitabine/pharmacology , Decitabine/therapeutic use , Humans , Karyotype , Karyotyping , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Tretinoin/pharmacology , Tretinoin/therapeutic use
2.
Cancer Res ; 81(4): 834-846, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33203699

ABSTRACT

Hypomethylating agents (HMA) have become the backbone of nonintensive acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) treatment, also by virtue of their activity in patients with adverse genetics, for example, monosomal karyotypes, often with losses on chromosome 7, 5, or 17. No comparable activity is observed with cytarabine, a cytidine analogue without DNA-hypomethylating properties. As evidence exists for compounding hypermethylation and gene silencing of hemizygous tumor suppressor genes (TSG), we thus hypothesized that this effect may preferentially be reversed by the HMAs decitabine and azacitidine. An unbiased RNA-sequencing approach was developed to interrogate decitabine-induced transcriptome changes in AML cell lines with or without a deletion of chromosomes 7q, 5q or 17p. HMA treatment preferentially upregulated several hemizygous TSG in this genomic region, significantly derepressing endogenous retrovirus (ERV)3-1, with promoter demethylation, enhanced chromatin accessibility, and increased H3K4me3 levels. Decitabine globally reactivated multiple transposable elements, with activation of the dsRNA sensor RIG-I and interferon regulatory factor (IRF)7. Induction of ERV3-1 and RIG-I mRNA was also observed during decitabine treatment in vivo in serially sorted peripheral blood AML blasts. In patient-derived monosomal karyotype AML murine xenografts, decitabine treatment resulted in superior survival rates compared with cytarabine. Collectively, these data demonstrate preferential gene derepression and ERV reactivation in AML with chromosomal deletions, providing a mechanistic explanation that supports the clinical observation of superiority of HMA over cytarabine in this difficult-to-treat patient group. SIGNIFICANCE: These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.See related commentary by O'Hagan et al., p. 813.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , Decitabine/pharmacology , Epigenesis, Genetic , Humans , Karyotype , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Monosomy
3.
J Invest Dermatol ; 140(11): 2280-2290.e4, 2020 11.
Article in English | MEDLINE | ID: mdl-32305317

ABSTRACT

Chronic skin wounds accompany many prevalent age-related diseases and are a major cause of morbidity and mortality. Both keratinocytes and fibroblasts contribute to the pathomechanisms in chronic skin wounds. Dysregulated pathways in the epidermis have been extensively studied, but little is known of the influence of dermal fibroblasts on chronic wounding. We isolated fibroblasts from chronic wounds, propagated them in vitro, and analyzed them using proteomic profiling in combination with functional characterization of the proteomic changes. Chronic wound-associated fibroblasts exhibit a unique proteome profile characteristic of lysosomal dysfunction and dysregulated TGFß signaling. They display a decreased propensity for cell proliferation and migration, combined with an enhanced ability to contract the extracellular matrix. With these properties, chronic wound-associated fibroblasts actively contribute to pathological inabilities to close wounds and represent potential targets for pharmacological interference for changing cellular phenotypes.


Subject(s)
Fibroblasts/chemistry , Proteomics/methods , Skin/injuries , Wounds and Injuries/metabolism , Adult , Aged , Aged, 80 and over , Azacitidine/pharmacology , Cell Movement , Cell Proliferation , Chronic Disease , Female , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Male , Middle Aged , Signal Transduction/physiology , Transforming Growth Factor beta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...