Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 605, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182609

ABSTRACT

Laser plasma-based accelerators provide an excellent source of collimated, bright, and adequately coherent betatron-type x-ray pulses with potential applications in science and industry. So far the laser plasma-based betatron radiation has been described within the concept of classical Liénard-Wiechert potentials incorporated in particle-in-cell simulations, a computing power-demanding approach, especially for the case of multi-petawatt lasers. In this work, we describe the laser plasma-based generation of betatron radiation at the most fundamental level of quantum mechanics. In our approach, photon emission from the relativistic electrons in the plasma bubble is described within a nonlinear quantum electrodynamics (QED) framework. The reported QED-based betatron radiation results are in excellent agreement with similar results using Liénard-Wiechert potentials, as well as in very good agreement with betatron radiation measurements, obtained with multi-10-TW lasers interacting with He and multielectron N[Formula: see text] gas targets. Furthermore, our QED approach results in a dramatic reduction of the computational runtime demands, making it a favorable tool for designing betatron radiation experiments, especially in multi-petawatt laser facilities.

2.
Sci Rep ; 13(1): 20699, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001241

ABSTRACT

Nanowire array targets exhibit high optical absorption when interacting with short, intense laser pulses. This leads to an increased yield in the production of accelerated particles for a variety of applications. However, these interactions are sensitive to the laser prepulse and could be significantly affected. Here, we show that an array of aligned nanowires is imploded when irradiated by an Amplified Spontaneous Emission pedestal of a [Formula: see text] laser with an intensity on the order of [Formula: see text]. Using radiation hydrodynamics simulations, we demonstrate that the electron density profile is radially compressed at the tip by the rocket-like propulsion of the ablated plasma. The mass density compression increases up to [Formula: see text] when a more dense nanowire array is used. This is due to the ablation pressure from the neighboring nanowires. These findings offer valuable information for selecting an appropriate target design for experiments aimed at enhancing production of accelerated particles.

3.
J Phys Condens Matter ; 24(23): 235802, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22588118

ABSTRACT

We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect.

SELECTION OF CITATIONS
SEARCH DETAIL