Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996458

ABSTRACT

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Subject(s)
Cryoelectron Microscopy , Hydro-Lyases , Pseudouridine , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , HEK293 Cells , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Pseudouridine/metabolism , Pseudouridine/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Catalytic Domain , Protein Binding , Mutation , Models, Molecular , Substrate Specificity , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/enzymology , Intramolecular Transferases
2.
Mol Biotechnol ; 65(10): 1598-1607, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36707469

ABSTRACT

In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Humans , RNA, Long Noncoding/genetics , Genetic Vectors/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , RNA Interference , Gene Silencing
3.
Biol Open ; 11(3)2022 03 15.
Article in English | MEDLINE | ID: mdl-35107128

ABSTRACT

RNA interference is one of the common methods of studying protein functions. In recent years critical reports have emerged indicating that off-target effects may have a much greater impact on RNAi-based analysis than previously assumed. We studied the influence of Adam10 and Adam17 silencing on MC38CEA cell response to proinflammatory stimuli. Eight lentiviral vector-encoded shRNAs that reduced ADAM10 expression, including two that are specific towards ADAM17, caused inhibition of cytokine-induced Nos2 expression presumably via off-target effects. ADAM10 silencing was not responsible for this effect because: (i) CRISPR/Cas9 knockdown of ADAM10 did not affect Nos2 levels; (ii) ADAM10 inhibitor increased rather than decreased Nos2 expression; (iii) overexpression of ADAM10 in the cells with shRNA-silenced Adam10 did not reverse the effect induced by shRNA; (iv) shRNA targeting ADAM10 resulted in decrease of Nos2 expression even in ADAM10-deficient cells. The studied shRNAs influenced transcription of Nos2 rather than stability of Nos2 mRNA. They also affected stimulation of Ccl2 and Ccl7 expression. Additionally, we used vectors with doxycycline-inducible expression of chosen shRNAs and observed reduced activation of NF-κB and, to a lesser extent, AP-1 transcription factors. We discuss the requirements of strict controls and verification of results with complementary methods for reliable conclusions of shRNA-based experiments.


Subject(s)
Amyloid Precursor Protein Secretases , Membrane Proteins , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
4.
Mol Ther Nucleic Acids ; 26: 711-731, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34703654

ABSTRACT

In parallel with the expansion of RNA interference (RNAi) techniques, accumulating evidence indicates that RNAi analyses might be seriously biased due to the off-target effects of gene-specific short hairpin RNAs (shRNAs). Our findings indicated that off-target effects of non-targeting shRNA comprise another source of misinterpreted shRNA-based data. We found that SHC016, which is one of two non-targeting shRNA controls for the MISSION (commercialized TRC) library, exerts deleterious effects that lead to elimination of the shRNA-coding cassette from the genomes of cultured murine and human cells. Here, we used a lentiviral vector with inducible SHC016 expression to confirm that this shRNA induces apoptosis in murine cells and senescence or mitotic catastrophe depending on the p53 status in human tumor cells. We identified the core spliceosomal protein, small nuclear ribonucleoprotein Sm D3 (SNRPD3), as a major SHC016 target in several cell lines and confirmed that CRISPRi knockdown of SNRPD3 mimics the effects of SHC016 expression in A549 and U251 cells. The overexpression of SNRPD3 rescued U251 cells from SHC016-induced mitotic catastrophe. Our findings disqualified non-targeting SHC016 shRNA and added a new premise to the discussion about the sources of uncertainty in RNAi results.

5.
Sci Rep ; 11(1): 10295, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986441

ABSTRACT

The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.


Subject(s)
Collagenases/pharmacology , Immunoglobulin G/immunology , Macrophages/drug effects , Peptide Hydrolases/pharmacology , Animals , Flow Cytometry , Glycosylation , Macrophages/immunology , Mice , Protein Binding
6.
Mol Neurobiol ; 57(4): 1799-1813, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31838721

ABSTRACT

Neuregulin 2 (NRG2) belongs to the EGF family of growth factors. Most of this family members require proteolytic cleavage to liberate their ectodomains capable of binding and activating their cognate ErbB receptors. To date, most of the studies investigating proteolytic processing of neuregulins focused on NRG1, which was shown to undergo ectodomain shedding by several ADAM proteases and BACE1 and the remaining fragment was further cleaved by γ-secretase. Recently, NRG2 attracted more attention due to its role in the neurogenesis and modulation of behaviors associated with psychiatric disorders. In this study, we used genetic engineering methods to identify proteases involved in proteolytic processing of murine NRG2. Using non-neuronal cell lines as well as cultures of primary hippocampal neurons, we demonstrated that the major proteases responsible for releasing NRG2 ectodomain are ADAM10 and BACE2. Co-expression of NRG2 and BACE2 in neurons of certain brain structures including medulla oblongata and cerebellar deep nuclei was confirmed via immunohistochemical staining. The cleavage of NRG2 by ADAM10 or BACE2 generates a C-terminal fragment that serves as a substrate for γ-secretase. We also showed that murine NRG2 is subject to post-translational modifications, substantial glycosylation of its extracellular part, and phosphorylation of the cytoplasmic tail.


Subject(s)
Nerve Growth Factors/metabolism , Protein Processing, Post-Translational , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Cell Line, Tumor , Glycosylation , Mice, Inbred C57BL , Nerve Growth Factors/chemistry , Open Reading Frames/genetics , Protein Domains , Substrate Specificity
7.
Int J Nanomedicine ; 14: 9587-9602, 2019.
Article in English | MEDLINE | ID: mdl-31824153

ABSTRACT

BACKGROUND: The functionalization of a nanoparticle surface with PEG (polyethylene glycol) is an approach most often used for extending nanomaterial circulation time, enhancing its delivery and retention in the target tissues, and decreasing systemic toxicity of nanocarriers and their cargos. However, because PEGylated nanomedicines were reported to induce immune response including production of anti-PEG antibodies, activation of the complement system as well as hypersensitivity reactions, hydrophilic polymers other than PEG are gaining interest as its replacement in nanomaterial functionalization. Here, we present the results of in vivo evaluation of polyelectrolyte nanocapsules with biodegradable, polyelectrolyte multilayer shells consisting of poly-l-lysine (PLL) and poly-l-glutamic (PGA) acid as a potential drug delivery system. We compared the effects of nanocapsules functionalized with two different "stealth" polymers as the external layer of tested nanocapsules was composed of PGA (PGA-terminated nanocapsules, NC-PGA) or the copolymer of poly-l-lysine and polyethylene glycol (PEG-terminated nanocapsules, NC-PEG). METHODS: Nanocapsules pharmacokinetics, biodistribution and routes of eliminations were analysed postmortem by fluorescence intensity measurement. Toxicity of intravenously injected nanocapsules was evaluated with analyses of blood morphology and biochemistry and by histological tissue analysis. DNA integrity was determined by comet assay, cytokine profiling was performed using flow cytometer and detection of antibodies specific to PEG was performed by ELISA assay. RESULTS: We found that NC-PGA and NC-PEG had similar pharmacokinetic and biodistribution profiles and both were eliminated by hepatobiliary and renal clearance. Biochemical and histopathological evaluation of long-term toxicity performed after a single as well as repeated intravenous injections of nanomaterials demonstrated that neither NC-PGA nor NC-PEG had any acute or chronic hemato-, hepato- or nephrotoxic effects. In contrast to NC-PGA, repeated administration of NC-PEG resulted in prolonged increased serum levels of a number of cytokines. CONCLUSION: Our results indicate that NC-PEG may cause undesirable activation of the immune system. Therefore, PGA compares favorably with PEG in equipping nanomaterials with stealth properties. Our research points to the importance of a thorough assessment of the potential influence of nanomaterials on the immune system.


Subject(s)
Nanocapsules/toxicity , Polyelectrolytes/pharmacokinetics , Polyelectrolytes/toxicity , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/toxicity , Polyglutamic Acid/pharmacokinetics , Polyglutamic Acid/toxicity , Animals , Cytokines/blood , Drug Delivery Systems , Female , Fluorescence , Mice, Inbred BALB C , Nanocapsules/chemistry , Organ Specificity/drug effects , Polyelectrolytes/chemistry , Polyethylene Glycols/chemistry , Polyglutamic Acid/chemistry , Rhodamines/chemistry , Tissue Distribution , Up-Regulation/drug effects
8.
Int J Nanomedicine ; 14: 7249-7262, 2019.
Article in English | MEDLINE | ID: mdl-31564877

ABSTRACT

BACKGROUND: Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. METHOD: Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. RESULTS: Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. CONCLUSION: The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.


Subject(s)
Alginates/pharmacology , Alginates/toxicity , Curcumin/pharmacology , Curcumin/toxicity , Micelles , Toxicity Tests , Alginates/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Biocompatible Materials/chemistry , Bone Marrow Cells/metabolism , Cell Line, Tumor , Curcumin/administration & dosage , Cytokines/blood , Female , Humans , Hydrodynamics , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Specificity
9.
Biol Open ; 8(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30709842

ABSTRACT

ADAM17 is a cell membrane metalloproteinase responsible for the release of ectodomains of numerous proteins from the cell surface. Although ADAM17 is often overexpressed in tumours and at sites of inflammation, little is known about the regulation of its expression. Here we investigate the role of NF-κB and Elk-1 transcription factors and upstream signalling pathways, NF-κB and ERK1/2 in ADAM17 expression in mouse brain endothelial cells stimulated with pro-inflammatory factors (TNF, IL-1ß, LPS) or a phorbol ester (PMA), a well-known stimulator of ADAM17 activity. Notably, NF-κB inhibitor, IKK VII, interfered with the IL-1ß- and LPS-mediated stimulation of ADAM17 expression. Furthermore, Adam17 promoter contains an NF-κB binding site occupied by p65 subunit of NF-κB. The transient increase in Adam17 mRNA in response to PMA was strongly reduced by an inhibitor of ERK1/2 phosphorylation, U0126. Luciferase reporter assay with vectors encoding the ERK1/2 substrate, Elk-1, fused with constitutively activating or repressing domains, indicated Elk-1 involvement in Adam17 expression. The site-directed mutagenesis of potential Elk-1 binding sites pointed to four functional Elk-1 binding sites in Adam17 promoter. All in all, our results indicate that NF-κB and Elk-1 transcription factors via NF-κB and ERK1/2 signalling pathways contribute to the regulation of mouse Adam17 expression.

10.
Int J Nanomedicine ; 13: 5159-5172, 2018.
Article in English | MEDLINE | ID: mdl-30233178

ABSTRACT

BACKGROUND: Toxicity of nanomaterials is one of the most important factors limiting their medical application. Evaluation of in vitro nanotoxicity allows for the identification and elimination of most of the toxic materials prior to animal testing. The current knowledge of the possible side effects of biodegradable nanomaterials, such as liposomes and polymeric organic nanoparticles, is limited. Previously, we developed a potential drug delivery system in the form of nanocapsules with polyelectrolyte, biodegradable shells consisting of poly-l-lysine and poly-l-glutamic acid (PGA), formed by the layer-by-layer adsorption technique. METHODS: Hemolysis assay, viability tests, flow cytometry analysis of vascular cell adhesion molecule-1 expression on endothelium, analysis of nitric oxide production, measurement of intracellular reactive oxygen species levels, detection of antioxidant enzyme activity, and analysis of DNA damage with comet assay were performed to study the in vitro toxicity of nanocapsules. RESULTS: In this work, we present the results of an in vitro analysis of toxicity of five-layer positively charged poly-l-lysine-terminated nanocapsules (NC5), six-layer negatively charged PGA-terminated nanocapsules (NC6) and five-layer PEGylated nanocapsules (NC5-PEG). PGA and polyethylene glycol (PEG) were used as two different "stealth" polymers. Of all the polyelectrolyte nanocapsules tested for blood compatibility, only cationic NC5 showed acute toxicity toward blood cells, expressed as hemolysis and aggregation. Neither NC6 nor NC5-PEG had proinflammatory activity evaluated through changes in the expression of NF-κB-dependent genes, iNOS and vascular cell adhesion molecule-1, induced oxidative stress, or promoted DNA damage in various cells. CONCLUSION: Our studies clearly indicate that PGA-coated (negatively charged) and PEGylated polyelectrolyte nanocapsules do not show in vitro toxicity, and their potential as a drug delivery system may be safely studied in vivo.


Subject(s)
Nanocapsules/toxicity , Polyelectrolytes/toxicity , Toxicity Tests , Animals , Cell Death/drug effects , DNA Damage , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Hep G2 Cells , Humans , Inflammation/pathology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mutagens/toxicity , Oxidative Stress/drug effects , Particle Size , Polyelectrolytes/chemical synthesis , Polyethylene Glycols/chemistry
11.
Front Immunol ; 9: 1096, 2018.
Article in English | MEDLINE | ID: mdl-29875771

ABSTRACT

Mouse IgG3 is highly protective against several life-threatening bacteria. This isotype is the only one among mouse IgGs that forms non-covalent oligomers, has increased functional affinity to polyvalent antigens, and efficiently agglutinates erythrocytes. IgG3 also triggers the complement cascade. The high efficacy of protection after passive immunization with IgG3 is correlated with the unique properties of this isotype. Although the features of IgG3 are well documented, their molecular basis remains elusive. Based on functional analyses of IgG1/IgG3 hybrid molecules with swapped constant domains, we identified IgG3-derived CH2 domain as a major determinant of antibody oligomerization and increased functional affinity to a multivalent antigen. The CH2 domain was also crucial for efficient hemagglutination triggered by IgG3 and was indispensable for complement cascade activation. This domain is glycosylated and atypically charged. A mutational analysis based on molecular models of CH2 domain charge distribution indicated that the functional affinity was influenced by the specific charge location. N-glycans were essential for CH2-dependent enhancement of hemagglutination and complement activation. Oligomerization was independent of CH2 charge and glycosylation. We also verified that known C1q-binding motifs are functional in mouse IgG3 but not in IgG1 framework. We generated for the first time a gain-of-function antibody with properties transferred from IgG3 into IgG1 by replacing the CH2 domain. Finding that the CH2 domain of IgG3 governs unique properties of this isotype is likely to open an avenue toward the generation of IgG3-inspired antibodies that will be protective against existing or emerging lethal pathogens.


Subject(s)
Antibody Affinity/immunology , Antigens/immunology , Hemagglutination/immunology , Immunoglobulin G/immunology , Protein Interaction Domains and Motifs , Protein Multimerization , Animals , Complement Activation , Complement System Proteins/immunology , Hemagglutination Tests , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/chemistry , Mice , Models, Molecular , Protein Binding , Structure-Activity Relationship
12.
Sci Rep ; 8(1): 519, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323348

ABSTRACT

IgM is a multivalent antibody which evolved as a first line defense of adaptive immunity. It consists of heavy and light chains assembled into a complex oligomer. In mouse serum there are two forms of IgM, a full-length and a truncated one. The latter contains µ' chain, which lacks a variable region. Although µ' chain was discovered many years ago, its origin has not yet been elucidated. Our results indicate that µ' chain is generated from a full-length heavy chain by non-enzymatic cleavage of the protein backbone. The cleavage occurred specifically after Asn209 and is prevented by mutating this residue into any other amino acid. The process requires the presence of other proteins, preferentially with an acidic isoelectric point, and is facilitated by neutral or alkaline pH. This unique characteristic of the investigated phenomenon distinguishes it from other, already described, Asn-dependent protein reactions. A single IgM molecule is able to bind up to 12 epitopes via its antigen binding fragments (Fabs). The cleavage at Asn209 generates truncated IgM molecules and free Fabs, resulting in a reduced IgM valence and probably affecting IgM functionality in vivo.


Subject(s)
Immunoglobulin M/metabolism , Amino Acid Sequence , Animals , HEK293 Cells , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin M/chemistry , Immunoglobulin M/genetics , Mice , Mutagenesis, Site-Directed , Protein Domains
13.
Sci Rep ; 7(1): 11682, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916792

ABSTRACT

SmartFlare probes have recently emerged as a promising tool for visualisation and quantification of specific RNAs in living cells. They are supposed to overcome the common drawbacks of current methods for RNA analysis: the need of cell fixation or lysis, or the requirements for genetic manipulations. In contrast to the traditional methods, SmartFlare probes are also presumed to provide information on RNA levels in single cells. Disappointingly, the results of our comprehensive study involving probes specific to five different transcripts, HMOX1, IL6, PTGS2, Nrg1, and ERBB4, deny the usefulness of SmartFlare probes for RNA analysis. We report a total lack of correlation between fluorescence intensities of SmartFlare probes and the levels of corresponding RNAs assessed by RT-qPCR. To ensure strong differences in the levels of analysed RNAs, their expression was modified via: (i) HMOX1-knockdown generated by CRISPR-Cas9 genome editing, (ii) hemin-mediated stimulation of HMOX1- and IL1ß-mediated stimulation of IL6- and PTGS2 transcription, (iii) lentiviral vector-mediated Nrg1 overexpression. Additionally, ERBB4-specific SmartFlare probe failed to distinguish between ERBB4-expressing and non-expressing cell lines. Finally, we demonstrated that fluorescence intensity of HMOX1-specific SmartFlare probe corresponds to the efficacy of its uptake and/or accumulation.


Subject(s)
Fluorescent Dyes , Gene Expression Profiling/methods , Molecular Probes , RNA/analysis , Single-Cell Analysis/methods , Cell Line , Diagnostic Errors , Humans , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
14.
Postepy Hig Med Dosw (Online) ; 70(0): 901-16, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27594566

ABSTRACT

Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.


Subject(s)
CRISPR-Cas Systems , Gene Targeting/methods , Genetic Engineering/methods , Animals , Archaea/genetics , Bacteria/genetics , Humans
15.
Sci Rep ; 6: 30938, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27484487

ABSTRACT

Mouse immunoglobulins M (IgMs) that recognize human blood group antigens induce haemagglutination and are used worldwide for diagnostic blood typing. Contrary to the current belief that IgGs are too small to simultaneously bind antigens on two different erythrocytes, we obtained agglutinating mouse IgG3 that recognized antigen B of the human ABO blood group system. Mouse IgG3 is an intriguing isotype that has the ability to form Fc-dependent oligomers. However, F(ab')2 fragments of the IgG3 were sufficient to agglutinate type B red blood cells; therefore, IgG3-triggered agglutination did not require oligomerization. Molecular modelling indicated that mouse IgG3 has a larger range of Fab arms than other mouse IgG subclasses and that the unique properties of mouse IgG3 are likely due to the structure of its hinge region. With a focus on applications in diagnostics, we compared the stability of IgG3 and two IgMs in formulated blood typing reagents using an accelerated storage approach and differential scanning calorimetry. IgG3 was much more stable than IgMs. Interestingly, the rapid decrease in IgM activity was caused by aggregation of the molecules and a previously unknown posttranslational proteolytic processing of the µ heavy chain. Our data point to mouse IgG3 as a potent diagnostic tool.


Subject(s)
ABO Blood-Group System/blood , Blood Grouping and Crossmatching/methods , Hemagglutination , Immunoglobulin G/chemistry , Immunoglobulin M/chemistry , Animals , Humans , Mice
16.
Colloids Surf B Biointerfaces ; 143: 463-471, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27037784

ABSTRACT

Targeted drug delivery systems are of special importance in cancer therapies, since serious side effects resulting from unspecific accumulation of highly toxic chemotherapeutics in healthy tissues can restrict effectiveness of the therapy. In this work we present the method of preparing biocompatible, polyelectrolyte nanoparticles containing the anticancer drug that may serve as a vehicle for passive tumor targeting. The nanoparticles were prepared via direct encapsulation of emulsion droplets in a polyelectrolyte multilayer shell. The oil cores that contained paclitaxel were stabilized by docusate sodium salt/poly-l-lysine surface complex (AOT/PLL) and were encapsulated in shells formed by the LbL adsorption of biocompatible polyelectrolytes, poly-L-glutamic acid (PGA) and PLL up to 5 or 6 layers. The surface of the nanoparticles was pegylated through the adsorption of the pegylated polyelectrolyte (PGA-g-PEG) as the outer layer to prolong the persistence of the nanocarriers in the circulation. The synthesized nanoparticles were stable in cell culture medium containing serum and their average size was 100nm, which makes them promising candidates for passive targeted drug delivery. This notion was further confirmed by the results of studying the biological effects of nanoformulations on two tumor cell lines: mouse colon carcinoma cell line CT26-CEA and the mouse mammary carcinoma cell line 4T1. The empty polyelectrolyte nanoparticles did not affect the viability of the tested cells, whereas encapsulated paclitaxel retained its strong cytotoxic/cytostatic activity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Carriers , Nanoparticles/chemistry , Paclitaxel/pharmacology , Polyelectrolytes/chemistry , Polyethylene Glycols/chemistry , Polyglutamic Acid/analogs & derivatives , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dioctyl Sulfosuccinic Acid/chemistry , Drug Compounding , Emulsions , Mice , Molecular Targeted Therapy , Paclitaxel/chemistry , Particle Size , Polyglutamic Acid/chemistry , Polylysine/chemistry
17.
PLoS One ; 10(7): e0132661, 2015.
Article in English | MEDLINE | ID: mdl-26176220

ABSTRACT

Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFß2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy.


Subject(s)
ADAM Proteins/metabolism , Cell Movement , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lymphangiogenesis , ADAM17 Protein , Cell Adhesion , Cell Line , Cell Proliferation , Cell Survival/drug effects , Culture Media , ErbB Receptors/metabolism , Extracellular Matrix Proteins/metabolism , Gene Silencing , Humans , Integrins/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Cell Surface/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta2/metabolism
18.
Immunol Lett ; 167(2): 95-102, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26219832

ABSTRACT

Tomlinson I+J are synthetic phagemid human scFv libraries widely employed to obtain specific antibody fragments via a phage display method. The pIT2/HB2151 expression system proposed by the designers of the libraries has certain drawbacks which result in the lack of expression or low expression levels of numerous soluble scFvs. At the stage of scFv screening, this may lead to losing some excellent antibodies, which can be avoided but requires laborious and expensive work. Here we present a new, pET-30-based vector, which is compatible with Tomlinson libraries, retains all virtues of pIT2 used as a plasmid and eliminates all its flaws. We demonstrate that pET-scFv-T is frequently superior to pIT2 in terms of efficient scFv expression. Moreover, an amber suppressor bacterial strain, RosettaBlue(DE3)pLysS, transformed with the new vector, pET-scFv-T, coding for a number of scFvs, produces substantial amounts of functional, easy to purify recombinant antibody fragments, regardless of whether their coding sequences contain amber codons. Thus, pET-scFv-T/RosettaBlue(DE3)pLysS expression system seems to be a perfect tool for screening for the finest soluble scFvs selected from Tomlinson I+J, as well as from many other phagemid libraries.


Subject(s)
Gene Expression , Genetic Vectors/genetics , Peptide Library , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/genetics , Base Sequence , Codon , Escherichia coli/genetics , Gene Order , Humans , Open Reading Frames , Single-Chain Antibodies/isolation & purification
19.
PLoS One ; 10(3): e0119486, 2015.
Article in English | MEDLINE | ID: mdl-25781030

ABSTRACT

Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.


Subject(s)
Antidotes/pharmacology , Cations/chemistry , Heparin Antagonists/pharmacology , Heparin/chemistry , Polymers/pharmacology , Thrombosis/drug therapy , Thrombosis/immunology , Animals , Blood Pressure/drug effects , Female , Heparin/metabolism , Immunization , Male , Mice , Mice, Inbred BALB C , Partial Thromboplastin Time , Polymers/chemistry , Polysaccharides/chemistry , Protamines/metabolism , Rats , Rats, Wistar , Thrombosis/metabolism
20.
Protein Expr Purif ; 110: 151-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25758709

ABSTRACT

The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.


Subject(s)
Baculoviridae/genetics , Cloning, Molecular/methods , Endothelial Cells/chemistry , Sf9 Cells/chemistry , Vascular Endothelial Growth Factor C/isolation & purification , Animals , Baculoviridae/metabolism , Endothelial Cells/metabolism , Gene Expression , Genetic Engineering , Glycosylation , Humans , Mice , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spodoptera , Vascular Endothelial Growth Factor C/biosynthesis , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...