Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 53(Pt 3): 629-634, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32684878

ABSTRACT

The mechanism of formation of residual strain in crystals with a damaged surface has been studied by transmission electron microscopy in GaAs wafers ground with sandpaper. The samples showed a dislocation network located near the sample surface penetrating to a depth of a few micrometres, comparable to the size of abrasive particles used for the treatment, and no other types of defects were observed. A simple model for the formation of a compressive strain induced by the dislocation network in the damaged layer is proposed, in satisfactory agreement with the measured strain. The strain is generated by the formation of dislocation half-loops at the crystal surface, having the same component of the Burgers vectors parallel to the surface of the crystal. This is equivalent to the insertion of extra half-planes from the crystal surface to the depth of the damaged zone. This model can be generalized for other crystal structures. An approximate calculation of the strain generated from the observed dislocation distribution in the sample agrees with the proposed model and permits the conclusion that this mechanism is in general sufficient to explain the observed compressive strain, without the need to consider other types of defects.

2.
Nanotechnology ; 31(39): 394001, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32521532

ABSTRACT

We report a detailed characterization of Ge NWs directly grown on glass by a MOVPE system, showing how different growth parameters can affect the final outcome and comparing NWs grown on a monocrystalline Ge(111) substrate with NWs grown on amorphous glass. Our experimental results indicate that the choice of the substrate does not affect any of the relevant morphological, crystallographic or electrical properties of Ge NWs. Lengths are in the 20-30 micrometer range with minimal tapering, while growth rates are very similar to to NWs grown on Ge(111); TEM and Raman characterization show a very good crystallinity of measured nanostructures. We have also analyzed the growth process on glass and we were able to reach a conclusion on the specific growth mechanism for Ge NWs on amorphous substrates. Our findings demonstrate that glass is a valid option as cheap substrate for the mass production of these nanostructures.

3.
Nanotechnology ; 30(8): 084002, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30524081

ABSTRACT

We demonstrate the feasibility of the use of isobutyl germane, a novel germanium source, for the vapor-liquid-solid growth of germanium nanowires (NWs) on Si (111) substrates, using a thin gold layer as catalyst. The density and the diameter of the NWs were controlled by varying the Au layer thickness and the isobutyl germane flow. The NWs grow along (111) directions and show perfect crystallinity and lengths from several hundreds of nm to 3-4 µm. The use of isobutyl germane gives a considerable technological advantage in the growth of germanium NWs since it is a safer and more manageable germanium source and it allows to grow Ge NWs in a standard vapor phase epitaxy system at 400 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...