Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2317305121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709919

ABSTRACT

Infanticide and adoption have been attributed to sexual selection, where an individual later reproduces with the parent whose offspring it killed or adopted. While sexually selected infanticide is well known, evidence for sexually selected adoption is anecdotal. We report on both behaviors at 346 nests over 27 y in green-rumped parrotlets (Forpus passerinus) in Venezuela. Parrotlets are monogamous with long-term pair bonds, exhibit a strongly male-biased adult sex ratio, and nest in cavities that are in short supply, creating intense competition for nest sites and mates. Infanticide attacks occurred at 256 nests in two distinct contexts: 1) Attacks were primarily committed by nonbreeding pairs (69%) attempting to evict parents from the cavity. Infanticide attacks per nest were positively correlated with population size and evicting pairs never adopted abandoned offspring. Competition for limited nest sites was a primary cause of eviction-driven infanticide, and 2) attacks occurred less frequently at nests where one mate died (31%), was perpetrated primarily by stepparents of both sexes, and was independent of population size. Thus, within a single species and mating system, infanticide occurred in multiple contexts due to multiple drivers. Nevertheless, 48% of stepparents of both sexes adopted offspring, and another 23% of stepfathers exhibited both infanticide and long-term care. Stepfathers were often young males who subsequently nested with widows, reaching earlier ages of first breeding than competitors and demonstrating sexually selected adoption. Adoption and infanticide conferred similar fitness benefits to stepfathers and appeared to be equivalent strategies driven by limited breeding opportunities, male-biased sex ratios, and long-term monogamy.


Subject(s)
Parrots , Animals , Male , Female , Venezuela , Parrots/physiology , Nesting Behavior/physiology , Sex Ratio , Sexual Behavior, Animal/physiology , Sexual Selection
2.
J Neuroendocrinol ; : e13365, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200690

ABSTRACT

The neuroendocrinology of vocal learning is exceptionally well known in passerine songbirds. Despite huge life history, genetic and ecological variation across passerines, song learning tends to occur as a result of rises in gonadal and non-gonadal sex steroids that shape telencephalic vocal control circuits and song. Parrots are closely related but independently evolved different cerebral circuits for vocal repertoire acquisition in both sexes that serve a broader suite of social functions and do not appear to be shaped by early androgens or estrogens; instead, parrots begin a plastic phase in vocal development at an earlier life history stage that favors the growth, maturation, and survival functions of corticosteroids. As evidence, corticosterone (CORT) supplements given to wild green-rumped parrotlets (Forpus passerinus) during the first week of vocal babbling resulted in larger vocal repertoires in both sexes in the remaining days before fledging. Here, we replicate this experiment but began treatment 1 week before in development, analyzing both experiments in one model and a stronger test of the organizational effects of CORT on repertoire acquisition. Early CORT treatment resulted in significantly larger repertoires compared to late treatment. Both treatment groups showed weak negative effects on the early, reduplicated stage of babbling and strong, positive effects of CORT on the later, variegated stage. Results are consistent with more formative effects of corticosteroids at earlier developmental stages and a role of the hypothalamic-pituitary-adrenal axis (HPA) in vocal repertoire acquisition. Given the early emergence of speech in human ontogeny, parrots are a promising model for understanding the putative role of the HPA axis in the construction of neural circuits that support language acquisition.

3.
Proc Biol Sci ; 289(1976): 20220592, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35642373

ABSTRACT

Prelinguistic babbling is a critical phase in infant language development and is best understood in temperate songbirds where it occurs primarily in males at reproductive maturity and is modulated by sex steroids. Parrots of both sexes are icons of tropical vocal plasticity, but vocal babbling is unreported in this group and whether the endocrine system is involved is unknown. Here we show that vocal babbling is widespread in a wild parrot population in Venezuela, ensues in both sexes during the nestling stage, occurs amidst a captive audience of mixed-aged siblings, and is modulated by corticosteroids. Spectrographic analysis and machine learning found phoneme diversity and combinatorial capacity increased precipitously for the first week, thereafter, crystalizing into a smaller repertoire, consistent with the selective attrition model of language development. Corticosterone-treated nestlings differed from unmanipulated birds and sham controls in several acoustic properties and crystallized a larger repertoire post-treatment. Our findings indicate babbling occurs during an early life-history stage in which corticosteroids help catalyse the transition from a universal learning programme to one finely tuned for the prevailing ecological environment, a potentially convergent scenario in human prelinguistic development.


Subject(s)
Parrots , Aged , Animals , Child Development , Endocrine System , Female , Humans , Language , Male
4.
J Exp Zool A Ecol Integr Physiol ; 331(10): 521-529, 2019 12.
Article in English | MEDLINE | ID: mdl-31545013

ABSTRACT

Life history theory predicts that physiological and behavioral responsiveness to stress should be delayed in development until the benefits of heightened reactivity outweigh the costs of potentially chronic glucocorticoid levels. Birds often acquire stress-responsiveness at locomotor independence, however, both stress-responsiveness and locomotor ability are delayed in birds with altricial developmental strategies. Parrots (Psittacidae) are extremely altricial, but it is not known whether they also postpone physiological responsiveness to stress until locomotor independence. We quantified individual variation in baseline and stress-induced plasma corticosterone (CORT) concentrations, the main avian glucocorticoid, in wild green-rumped parrotlets (Forpus passerinus) of Venezuela at four stages of nestling development. Parrotlet neonates are very underdeveloped and compete for parental care among extreme sibling size hierarchies, a competitive scenario that might benefit from early hypothalamic-pituitary-adrenal (HPA) functionality. Nestlings that underwent a standardized restraint stress-treatment showed higher average CORT concentrations compared to baseline in all age groups sampled, and exhibited no evidence of age-related changes in the stress response. This is 2 weeks before locomotor independence and earlier than previously documented for altricial species. Results suggest that precocity of HPA function may be advantageous to growth and survivorship in extremely altricial birds.


Subject(s)
Corticosterone/blood , Parrots/growth & development , Adrenal Glands/growth & development , Aging , Animals , Female , Hypothalamo-Hypophyseal System/growth & development , Male , Parrots/physiology , Restraint, Physical , Stress, Physiological/physiology
5.
Nat Commun ; 10(1): 3109, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337752

ABSTRACT

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.


Subject(s)
Acclimatization/physiology , Birds/physiology , Climate Change , Phenotype , Animals , Selection, Genetic/physiology , Time Factors
6.
J Exp Biol ; 216(Pt 2): 338-45, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23038735

ABSTRACT

Parrots rely heavily on vocal signals to maintain their social and mobile lifestyles. We studied vocal ontogeny in nests of wild green-rumped parrotlets (Forpus passerinus) in Venezuela. We identified three successive phases of vocal signaling that corresponded closely to three independently derived phases of physiological development. For each ontogenetic phase, we characterized the relative importance of anatomical constraints, motor skills necessary for responding to specific contexts of the immediate environment, and the learning of signals that are necessary for adult forms of communication. We observed shifts in the relative importance of these three factors as individuals progressed from one stage to the next; there was no single fixed ratio of factors that applied across the entire ontogenetic sequence. The earliest vocalizations were short in duration, as predicted from physical constraints and under-developed motor control. Calls became longer and frequency modulated during intermediate nestling ages in line with motor skills required for competitive begging. In the week before fledging, calls drastically shortened in accordance with the flight-constrained short durations of adult contact calls. The latter constraints were made evident by the demonstrated links between wing-assisted incline running, a widespread prelude to avian flight, just before the shift from long-duration begging calls to short-duration contact calls. At least in this species, the shifting emphases of factors at different ontogenetic stages precluded the morphing of intermediate-stage begging calls into adult contact calls; as shown previously, the latter are influenced by sample templates provided by parents.


Subject(s)
Parrots/growth & development , Vocalization, Animal , Animals , Female , Locomotion
7.
Proc Biol Sci ; 279(1728): 585-91, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-21752824

ABSTRACT

Learned birdsong is a widely used animal model for understanding the acquisition of human speech. Male songbirds often learn songs from adult males during sensitive periods early in life, and sing to attract mates and defend territories. In presumably all of the 350+ parrot species, individuals of both sexes commonly learn vocal signals throughout life to satisfy a wide variety of social functions. Despite intriguing parallels with humans, there have been no experimental studies demonstrating learned vocal production in wild parrots. We studied contact call learning in video-rigged nests of a well-known marked population of green-rumped parrotlets (Forpus passerinus) in Venezuela. Both sexes of naive nestlings developed individually unique contact calls in the nest, and we demonstrate experimentally that signature attributes are learned from both primary care-givers. This represents the first experimental evidence for the mechanisms underlying the transmission of a socially acquired trait in a wild parrot population.


Subject(s)
Learning , Parrots/physiology , Vocalization, Animal , Animals , Female , Linear Models , Male , Parrots/growth & development , Reproduction , Sound Spectrography/veterinary , Venezuela , Videotape Recording
8.
Proc Biol Sci ; 273(1589): 999-1005, 2006 Apr 22.
Article in English | MEDLINE | ID: mdl-16627286

ABSTRACT

The concentration of avian song at first light (i.e. the dawn chorus) is widely appreciated, but has an enigmatic functional significance. One widely accepted explanation is that birds are active at dawn, but light levels are not yet adequate for foraging. In forest communities, the onset to singing should thus be predictable from the species' foraging strata, which is ultimately related to ambient light level. To test this, we collected data from a tropical forest of Ecuador involving 57 species from 27 families of birds. Time of first song was a repeatable, species-specific trait, and the majority of resident birds, including non-passerines, sang in the dawn chorus. For passerine birds, foraging height was the best predictor of time of first song, with canopy birds singing earlier than birds foraging closer to the forest floor. A weak and opposite result was observed for non-passerines. For passerine birds, eye size also predicted time of first song, with larger eyed birds singing earlier, after controlling for body mass, taxonomic group and foraging height. This is the first comparative study of the dawn chorus in the Neotropics, and it provides the first evidence for foraging strata as the primary determinant of scheduling participation in the dawn chorus of birds.


Subject(s)
Birds/physiology , Light , Phylogeny , Vocalization, Animal , Animals , Birds/anatomy & histology , Birds/genetics , Body Size , Circadian Rhythm , Ecosystem , Ecuador , Eye/anatomy & histology , Feeding Behavior , Geography , Organ Size , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...