Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Br J Nutr ; : 1-17, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169355

ABSTRACT

The purpose of this study was to investigate the effect of dietary n-3 very-long-chain PUFA (n-3 VLC-PUFA) on the maturation and development of skin tissue in juvenile Atlantic salmon (Salmo salar) in vivo, as well as their effects on skin keratocyte and human skin fibroblast cell migration in vitro. Atlantic salmon were fed different dietary levels of n-3 VLC-PUFA from an initial weight of 6 g to a final weight of 11 g. Changes in skin morphology were analysed at two time points during the experiment, and the effects on skin tissue fatty acid composition were determined. Additionally, in vitro experiments using human dermal fibroblasts and primary Atlantic salmon keratocytes were conducted to investigate the effect of VLC-PUFA on the migration capacity of the cells. The results demonstrated that increased dietary levels of n-3 VLC-PUFA led to an increased epidermis thickness and more rapid scale maturation in Atlantic salmon skin in vivo, leading to a more mature skin morphology, and possibly more robust skin, at an earlier life stage. Additionally, human skin fibroblasts and salmon skin keratocytes supplemented with n-3 VLC-PUFA in vitro showed more rapid migration, indicating potentially beneficial effects of VLC-PUFA in wound healing. In conclusion, VLC-PUFA may have beneficial effects on skin tissue development, function and integrity.

3.
Nutrients ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242227

ABSTRACT

Plant-based food provides more ALA (α-linolenic acid) and less EPA (eicosapentaenoic acid) and DHA (docosahexanoic acid) than marine food. Earlier studies indicate that cetoleic acid (22:1n-11) stimulates the n-3 pathway from ALA to EPA and DHA. The present study aimed to investigate the dietary effects of camelina oil (CA) high in ALA and sandeel oil (SA) high in cetoleic acid on the conversion of ALA to EPA and DHA. Male Zucker fa/fa rats were fed a diet of soybean oil (Ctrl) or diets of CA, SA, or a combination of CA and SA. Significantly higher levels of DPA (docosapentaenoic acid) and DHA in blood cells from the CA group compared to the Ctrl indicate an active conversion of ALA to DPA and DHA. Increasing the uptake and deposition of EPA and DHA meant that a trend towards a decrease in the liver gene expression of Elovl5, Fads1, and Fads2 along with an increase in the dietary content of SA was observed. However, 25% of the SA could be exchanged with CA without having a significant effect on EPA, DPA, or DHA in blood cells, indicating that bioactive components in SA, such as cetoleic acid, might counteract the inhibiting effect of the high dietary content of DHA on the n-3 biosynthetic pathway.


Subject(s)
Docosahexaenoic Acids , Eicosapentaenoic Acid , Rats , Animals , Docosahexaenoic Acids/metabolism , Rats, Zucker , Eicosapentaenoic Acid/metabolism , Diet , Liver/metabolism , alpha-Linolenic Acid/metabolism
4.
Front Physiol ; 13: 883621, 2022.
Article in English | MEDLINE | ID: mdl-35574453

ABSTRACT

Due to a limited access to marine raw materials from capture fisheries, Atlantic salmon feeds are currently based on mainly plant ingredients (75%) while only 25% come from traditional marine ingredients including marine fish meal and fish oil. Thus, current feeds contain less of the essential omega-3 fatty acids. The aim of the study was to assess the impact of different omega-3 levels in fish feed on intestinal barrier and transporting functions of Atlantic salmon freshwater and seawater smolts. Atlantic salmon were fed three levels of omega-3 (2, 1 and 0.5%) and fish performance was followed through smoltification and the subsequent seawater acclimation. Intestinal barrier and transporting functions were assessed using Ussing chamber methodology and combined with transcript analysis of tight junction related proteins and ion transporters. A linear decrease in growth was observed with decreasing omega-3 levels. Low (0.5%) inclusion of omega-3 impaired the barrier function of the proximal intestine compared to 2% inclusion. Further, low levels of omega-3 decrease the transepithelial electrical potential across the epithelium indicating disturbed ion transport. It can be concluded that low dietary levels of omega-3 impair somatic growth and intestinal function of Atlantic salmon.

5.
Br J Nutr ; 127(1): 35-54, 2022 01 14.
Article in English | MEDLINE | ID: mdl-33750483

ABSTRACT

There is limited knowledge about the metabolism and function of n-3 very-long-chain PUFA (n-3 VLC-PUFA) with chain lengths ≥ 24. They are known to be produced endogenously in certain tissues from EPA and DHA and not considered to originate directly from dietary sources. The aim of this study was to investigate whether n-3 VLC-PUFA from dietary sources are bio-available and deposited in tissues of rat, fish and mouse. Rats were fed diets supplemented with a natural fish oil (FO) as a source of low dietary levels of n-3 VLC-PUFA, while Atlantic salmon and mice were fed higher dietary levels of n-3 VLC-PUFA from a FO concentrate. In all experiments, n-3 VLC-PUFA incorporation in organs was investigated. We found that natural FO, due to its high EPA content, to a limited extent increased endogenous production of n-3 VLC-PUFA in brain and eye of mice with neglectable amounts of n-3 VLC-PUFA originating from diet. When higher dietary levels were given in the form of concentrate, these fatty acids were bio-available and deposited in both phospholipids and TAG fractions of all tissues studied, including skin, eye, brain, testis, liver and heart, and their distribution appeared to be tissue-dependent, but not species-specific. When dietary EPA and DHA were balanced and n-3 VLC-PUFA increased, the major n-3 VLC-PUFA from the concentrate increased significantly in the organs studied, showing that these fatty acids can be provided through diet and thereby provide a tool for functional studies of these VLC-PUFA.


Subject(s)
Fatty Acids, Omega-3 , Salmo salar , Animals , Diet/veterinary , Docosahexaenoic Acids/metabolism , Fatty Acids , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Fish Oils , Male , Mice , Rats , Salmo salar/metabolism
6.
Genes (Basel) ; 11(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198292

ABSTRACT

Feed safety is a necessity for animal health and welfare as well as prerequisite for food safety and human health. Wheat gluten (WG) is considered as a valuable protein source in fish feed due to its suitability as a feed binder, high digestibility, good amino acid profile, energy density and most importantly, due to its relatively low level of anti-nutritional factors (ANFs). The main aim of this study was to identify the impact of dietary WG on salmon health by analysing growth, feed efficiency and the hepatic and intestinal transcriptomes. The fish were fed either control diet with fishmeal (FM) as the only source of protein or diets, where 15% or 30% of the FM were replaced by WG. The fish had a mean initial weight of 223 g and approximately doubled their weight during the 9-week experiment. Salmon fed on 30% WG showed reduced feed intake compared to the 15% and FM fed groups. The liver was the less affected organ but fat content and activities of the liver health markers in plasma increased with the inclusion level of WG in the diet. Gene expression analysis showed significant changes in both, intestine and liver of fish fed with 30% WG. Especially noticeable were changes in the lipid metabolism, in particular in relation to the intestinal lipoprotein transport and sterol metabolism. Moreover, the intestinal transcriptome of WG-fed fish showed shifts in the expression of a large number of genes responsible for immunity and tissue structure and integrity. These observations implied that the fish receiving WG-containing diet were undergoing nutritional stress. Overall, the study provided evidence that a high dietary level of WG can have a negative impact on the intestinal and liver health of salmon with symptoms similar to gluten sensitivity in humans.


Subject(s)
Animal Feed/adverse effects , Glutens , Intestines/physiology , Salmo salar/genetics , Wheat Hypersensitivity/genetics , Animals , Aquaculture , Blood Chemical Analysis , Liver/physiology , Salmo salar/growth & development , Triticum , Wheat Hypersensitivity/veterinary
7.
Br J Nutr ; 122(7): 755-768, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31288871

ABSTRACT

The present study aimed to determine if the long-chain MUFA cetoleic acid (22 : 1n-11) can improve the capacity to synthesise the health-promoting n-3 fatty acids EPA and DHA in human and fish models. Human hepatocytes (HepG2) and salmon primary hepatocytes were first enriched with cetoleic acid, and thereafter their capacities to convert radio-labelled 18 : 3n-3 (α-linolenic acid, ALA) to EPA and DHA were measured. Increased endogenous levels of cetoleic acid led to increased production of radio-labelled EPA + DHA in HepG2 by 40 % and EPA in salmon hepatocytes by 12 %. In order to verify if dietary intake of a fish oil rich in cetoleic acid would have the same beneficial effects on the n-3 fatty acid metabolic pathway in vivo as found in vitro, Atlantic salmon were fed four diets supplemented with either sardine oil low in cetoleic acid or herring oil high in cetoleic acid at two inclusion levels (Low or High). The diets were balanced for EPA + DHA content within the Low and within the High groups. The salmon were fed these diets from 110 to 242 g. The level of EPA + DHA in liver and whole-body retention of docosapentaenoic acid and EPA + DHA relative to what was eaten, increased with increased dietary cetoleic acid levels. Thus, it is concluded that cetoleic acid stimulated the synthesis of EPA and DHA from ALA in human HepG2 and of EPA in salmon hepatocytes in vitro and increased whole-body retention of EPA + DHA in salmon by 15 % points after dietary intake of cetoleic acid.


Subject(s)
Eicosapentaenoic Acid/metabolism , Erucic Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Salmo salar/metabolism , Animals , Hep G2 Cells , Humans , Salmo salar/growth & development
8.
Toxins (Basel) ; 11(4)2019 04 13.
Article in English | MEDLINE | ID: mdl-31013949

ABSTRACT

New protein sources in fish feed require the assessment of the carry-over potential of contaminants and anti-nutrients from feed ingredients into the fish, and the assessment of possible health risks for consumers. Presently, plant materials including wheat and legumes make up the largest part of aquafeeds, so evaluation of the transfer capabilities of typical toxic metabolites from plant-infesting fungi and of vegetable phytoestrogens into fish products is of great importance. With the aim of facilitating surveillance of relevant mycotoxins and isoflavones, we have developed and validated a multi-analyte LC-HRMS/MS method that can be used to ensure compliance to set maximum levels in feed and fish. The method performance characteristics were determined, showing high specificity for all 25 targeted analytes, which included 19 mycotoxins and three isoflavones and their corresponding aglycons with sufficient to excellent sensitivities and uniform analytical linearity in different matrices. Depending on the availability of matching stable isotope-labelled derivates or similar-structure homologues, calibration curves were generated either by using internal standards or by matrix-matched external standards. Precision and recovery data were in the accepted range, although they varied between the different analytes. This new method was considered as fit-for-purpose and applied for the analysis of customised fish feed containing wheat gluten, soy, or pea protein concentrate as well as salmon and zebrafish fed on diets with these ingredients for a period of up to eight weeks. Only mycotoxin enniatin B, at a level near the limit of detection, and low levels of isoflavones were detected in the feed, demonstrating the effectiveness of maximum level recommendations and modern feed processing technologies in the Norwegian aquaculture industry. Consequently, carry-over into fish muscle was not observed, confirming that fillets from plant-fed salmon were safe for human consumption.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Mycotoxins/analysis , Phytoestrogens/analysis , Salmon , Zebrafish , Animals , Chromatography, Liquid , Glutens , Pea Proteins , Soybean Proteins , Tandem Mass Spectrometry , Triticum
9.
Fish Physiol Biochem ; 43(4): 1065-1080, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28280951

ABSTRACT

The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1ß in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1ß and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Leukocytes/drug effects , Leukocytes/metabolism , Salmo salar/physiology , Toll-Like Receptors/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Fats , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Gene Expression Regulation/drug effects , Head Kidney/chemistry , Head Kidney/metabolism , Toll-Like Receptors/genetics
10.
PLoS One ; 11(12): e0168230, 2016.
Article in English | MEDLINE | ID: mdl-27973547

ABSTRACT

Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.


Subject(s)
Biosynthetic Pathways , Fatty Acids, Omega-3/biosynthesis , Hepatocytes/metabolism , Salmo salar/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Acyl-CoA Oxidase/genetics , Acyl-CoA Oxidase/metabolism , Animals , Apoptosis , Docosahexaenoic Acids/biosynthesis , Dose-Response Relationship, Drug , Eicosapentaenoic Acid/biosynthesis , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Gene Expression Regulation , Hepatocytes/cytology , Real-Time Polymerase Chain Reaction , Salmo salar/genetics , alpha-Linolenic Acid/biosynthesis
11.
J Agric Food Chem ; 63(15): 3887-902, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25798699

ABSTRACT

Soybean meal-induced enteritis (SBMIE) is a well-described condition in the distal intestine of salmonids, and saponins have been implicated as the causal agent. However, the question remains whether saponins alone cause SBMIE. Moreover, the dose-response relationship has not been described. In a 10 week feeding trial with Atlantic salmon, a highly purified (95%) soya saponin preparation was supplemented (0, 2, 4, 6, or 10 g/kg) to two basal diets, one containing fishmeal as the major protein source (FM) and the other 25% lupin meal (LP). Saponins caused dose-dependent increases in the severity of inflammation independent of the basal diet, with concomitant alterations in digestive functions and immunological marker expression. Thus, saponins induced inflammation whether the diet contained other legume components or not. However, responses were often the same or stronger in fish fed the corresponding saponin-supplemented LP diets despite lower saponin exposure, suggesting potentiation by other legume component(s).


Subject(s)
Enteritis/veterinary , Fish Diseases/etiology , Glycine max/adverse effects , Salmo salar/metabolism , Saponins/adverse effects , Animal Feed/adverse effects , Animal Feed/analysis , Animals , Enteritis/etiology , Enteritis/metabolism , Enteritis/pathology , Fish Diseases/metabolism , Fish Diseases/pathology , Intestines/immunology , Intestines/pathology , Saponins/metabolism , Glycine max/chemistry
12.
J Nutr ; 141(9): 1618-28, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21753060

ABSTRACT

An increasingly larger proportion of the oils used in diets for farmed fish are plant derived and rapeseed oil is most commonly used. Despite high dietary lipid levels and a marked change in lipid composition, the transport and metabolic fate of absorbed fatty acids is not fully understood in teleost fish. The main purpose of this study was to trace the postabsorptive metabolic fate of 2 fatty acids of different chain length: oleic acid [(3)H-18:1(n-9)], constituting 70% of fatty acids in rapeseed oil, and the medium-chain decanoic acid [(14)C-10:0], which does not require carrier molecules for membrane passage. The fatty acids and their metabolites were traced in portal and peripheral blood, liver, heart, skeletal muscle, and visceral adipose tissue at time intervals from 3 to 48 h after feeding. The portal vein was the primary transport route for both 10:0 and 18:1(n-9) from the intestine to the liver the first 6 h after feed intake. From 12 to 48 h, the peripheral route became increasingly more important. The study also indicates a possible direct transport route of fatty acids from the intestine to the surrounding viscera. Our data demonstrate that whereas 18:1(n-9) is primarily deposited as TG in skeletal muscle and visceral adipose tissue, 10:0 is used by the heart and skeletal muscle as a source for rapid energy production.


Subject(s)
Animal Feed/analysis , Decanoic Acids/metabolism , Diet/veterinary , Dietary Fats/metabolism , Oleic Acid/metabolism , Salmo salar/metabolism , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animal Nutritional Physiological Phenomena , Animals , Carbon Isotopes/metabolism , Decanoic Acids/chemistry , Dietary Fats/blood , Fatty Acids, Monounsaturated , Lipid Metabolism , Liver/metabolism , Myocardium/metabolism , Oleic Acid/chemistry , Plant Oils/chemistry , Rapeseed Oil
13.
Biochim Biophys Acta ; 1801(2): 127-37, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19833228

ABSTRACT

The formation and mineralisation of bone are two critical processes in fast-growing Atlantic salmon (Salmo salar). The mechanisms of these processes, however, have not been described in detail. Thus, in vitro systems that allow the study of factors that influence bone formation in farmed Atlantic salmon are highly warranted. We describe here a method by which unspecialized primary cells from salmon white muscle can differentiate to osteoblasts in vitro. We have subsequently used the differentiated cells as a model system to study the effects of two factors that influence bone formation in Atlantic salmon under commercial farming conditions, namely polyunsaturated fatty acids, PUFAs, and temperature. Muscle precursor cells changed their morphology from triangular or spindle-shaped cells to polygonal or cubical cells after 3 weeks in osteogenic medium. In addition, gene expression studies showed that marker genes for osteoblastogenesis; alp, col1a1, osteocalcin, bmp2 and bmp4 increased after 3 weeks of incubation in osteogenic media showing that these cells have differentiated to osteoblasts at this stage. Adding CLA or DHA to the osteoblast media resulted in a reduced PGE(2) production and increased expression of osteocalcin. Further, temperature studies showed that differentiating osteoblasts are highly sensitive to increased incubation temperature at early stages of differentiation. Our studies show that unspecialized precursor cells isolated from salmon muscle tissue can be caused to differentiate to osteoblasts in vitro. Furthermore, this model system appears to be suitable for the study of osteoblast biology in vitro.


Subject(s)
Cell Differentiation , Fatty Acids, Unsaturated/pharmacology , Gene Expression/physiology , Hyperthermia, Induced , Myoblasts/cytology , Osteoblasts/cytology , Animals , Dinoprostone/metabolism , In Vitro Techniques , Myoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar
SELECTION OF CITATIONS
SEARCH DETAIL
...