Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338722

ABSTRACT

Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.


Subject(s)
Embryoid Bodies , Retina , Reproducibility of Results , Retina/metabolism , Organoids , Cell Differentiation
2.
Ophthalmol Sci ; 4(2): 100416, 2024.
Article in English | MEDLINE | ID: mdl-38170125

ABSTRACT

Purpose: To investigate the histology of Bruch's membrane (BM) calcification in pseudoxanthoma elasticum (PXE) and correlate this to clinical retinal imaging. Design: Experimental study with clinicopathological correlation. Subjects and Controls: Six postmortem eyes from 4 PXE patients and 1 comparison eye from an anonymous donor without PXE. One of the eyes had a multimodal clinical image set for comparison. Methods: Calcification was labeled with OsteSense 680RD, a fluorescent dye specific for hydroxyapatite, and visualized with confocal microscopy. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM-EDX) and time-of-flight secondary ion mass spectrometry (TOF-SIMs) were used to analyze the elemental and ionic composition of different anatomical locations. Findings on cadaver tissues were compared with clinical imaging of 1 PXE patient. Main Outcome Measures: The characteristics and topographical distribution of hydroxyapatite in BM in eyes with PXE were compared with the clinical manifestations of the disease. Results: Analyses of whole-mount and sectioned PXE eyes revealed an extensive, confluent OsteoSense labeling in the central and midperipheral BM, transitioning to a speckled labeling in the midperiphery. These areas corresponded to hyperreflective and isoreflective zones on clinical imaging. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy and TOF-SIMs analyses identified these calcifications as hydroxyapatite in BM of PXE eyes. The confluent fluorescent appearance originates from heavily calcified fibrous structures of both the collagen and the elastic layers of BM. Calcification was also detected in an aged comparison eye, but this was markedly different from PXE eyes and presented as small snowflake-like deposits in the posterior pole. Conclusions: Pseudoxanthoma elasticum eyes show extensive hydroxyapatite deposition in the inner and outer collagenous and elastic BM layers in the macula with a gradual change toward the midperiphery, which seems to correlate with the clinical phenotype. The snowflake-like calcification in BM of an aged comparison eye differed markedly from the extensive calcification in PXE. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279267

ABSTRACT

X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.


Subject(s)
Retinoschisis , Male , Humans , Animals , Mice , Retinoschisis/genetics , Retinoschisis/therapy , Retinoschisis/diagnosis , Retina/pathology , Electroretinography , Genetic Therapy , Mutation , Eye Proteins/genetics
4.
EMBO Mol Med ; 16(1): 4-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177529

ABSTRACT

In the April issue of this Journal, Boffa and coworkers put forward a new therapeutic approach for Gyrate Atrophy of the Choroid and Retina (GACR; OMIM 258870) (Boffa et al, 2023). The authors propose to apply gene therapy to the liver for GACR, a metabolic disease primarily affecting eyesight due to retinal degeneration. Their vision is enthusiastically supported by a News and Views comment in the same issue (Seker Yilmaz and Gissen, 2023). However, based on disease pathology, patient's needs, ethical considerations, therapeutic developmental time lines, and current state of the art of gene therapy for liver and eye, we have a different view on this issue: We argue below that local treatment of the eye is the preferred option for GACR.


Subject(s)
Gyrate Atrophy , Retinal Degeneration , Humans , Gyrate Atrophy/genetics , Gyrate Atrophy/pathology , Gyrate Atrophy/therapy , Retina/pathology , Choroid , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Atrophy/pathology
5.
Ophthalmol Retina ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38104928

ABSTRACT

PURPOSE: To date, there is no standard treatment regimen for carbonic anhydrase inhibitors (CAIs) in X-linked retinoschisis (XLRS) patients. This retrospective study aims to evaluate the efficacy of CAIs on visual acuity and cystoid fluid collections (CFC) in XRLS patients in Dutch and Belgian tertiary referral centers. DESIGN: Retrospective cohort study. PARTICIPANTS: Forty-two patients with XLRS. METHODS: In total, 42 patients were enrolled. To be included, patients had to have previous treatment with an oral CAI (acetazolamide), a topical CAI (brinzolamide/dorzolamide), or a combination of an oral and a topical CAI for at least 4 consecutive weeks. We evaluated the effect of the CAI on best-corrected visual acuity (BCVA) and central foveal thickness (CFT) on OCT. MAIN OUTCOME MEASURES: Central foveal thickness and BCVA. RESULTS: The median age at the baseline visit of the patients in this cohort study was 14.7 (range, 43.6) years, with a median (interquartile range [IQR]) follow-up period of 4.0 (2.2-5.2) years. During the follow-up period, 25 patients were treated once with an oral CAI (60%), 24 patients were treated once with a topical CAI (57%), and 11 patients were treated once with a combination of both topical and oral CAI (26%). We observed a significant reduction of CFT for oral CAI by 14.37 µm per 100 mg per day (P < 0.001; 95% confidence interval [CI], -19.62 to -9.10 µm) and for topical CAI by 7.52 µm per drop per day (P = 0.017; 95% CI, -13.67 to -1.32 µm). The visual acuity changed significantly while on treatment with oral CAI by -0.0059 logMAR per 100 mg (P = 0.008; 95% CI, -0.010 to -0.0013 logMAR). Seven patients (17%) had side effects leading to treatment discontinuation. CONCLUSIONS: Our data indicate that treatment with (oral) CAI may be beneficial for short-term management of CFC in patients with XLRS. Despite a significant reduction in CFT, the change in visual acuity was modest and not of clinical significance. Nonetheless, the anatomic improvement of the central retina in these patients may be of value to create an optimal retinal condition for future potential treatment options such as gene therapy. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.

6.
Acta Ophthalmol ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749859

ABSTRACT

PURPOSE: To assess the longitudinal vision-related quality of life among patients with CRB1-associated inherited retinal dystrophies. METHODS: In this longitudinal questionnaire study, the National Eye Institute Visual Function Questionnaire (39 items, NEI VFQ-39) was applied at baseline, two-year follow-up, and 4-year follow-up in patients with pathogenic CRB1 variants. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] Classical test theory was performed to obtain subdomain scores and in particular 'near activities' and 'total composite' scores. The Rasch analysis based on previous calibrations of the NEI VFQ-25 was applied to create visual functioning and socio-emotional subscales. RESULTS: In total, 22 patients with a CRB1-associated retinal dystrophy were included, […] with a median age of 25.0 years (interquartile range: 13-31 years) at baseline and mean follow-up of 4.0 ± 0.3 years. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] A significant decline at 4 years was observed for 'near activities' (51.0 ± 23.8 vs 35.4 ± 14.7, p = 0.004) and 'total composite' (63.0 ± 13.1 vs 52.0 ± 12.1, p = 0.001) subdomain scores. For the Rasch-scaled scores, the 'visual functioning' scale significantly decreased after 2 years (-0.89 logits; p = 0.012), but not at 4-year follow-up (+0.01 logits; p = 0.975). [Correction added on 20 November 2023, after first online publication: In the preceding sentence, "…after 4 years…" has been corrected to "…after 2 years…" in this version.] The 'socio-emotional' scale also showed a significant decline after 2 years (-0.78 logits, p = 0.033) and 4 years (-0.83 logits, p = 0.021). CONCLUSION: In the absence of an intervention, a decline in vision-related quality of life is present in patients with pathogenic CRB1 variants at 4-year follow-up. Patient-reported outcome measures should be included in future clinical trials, as they can be a potential indicator of disease progression and treatment efficacy.

7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108642

ABSTRACT

Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.


Subject(s)
Night Blindness , Retinal Dystrophies , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells
8.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: mdl-36899910

ABSTRACT

Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Zinc/metabolism , Macular Degeneration/metabolism , Gene Expression Profiling , Sequence Analysis, RNA
9.
Surv Ophthalmol ; 68(4): 641-654, 2023.
Article in English | MEDLINE | ID: mdl-36764396

ABSTRACT

Wolfram-like syndrome (WFLS) is a recently described autosomal dominant disorder with phenotypic similarities to autosomal recessive Wolfram syndrome (WS), including optic atrophy, hearing impairment, and diabetes mellitus. We summarize current literature, define the clinical characteristics, and investigate potential genotype phenotype correlations. A systematic literature search was conducted in electronic databases Pubmed/MEDLINE, EMBACE, and Cochrane Library. We included studies reporting patients with a clinical picture consisting at least 2 typical clinical manifestations of WSF1 disorders and heterozygous mutations in WFS1. In total, 86 patients from 35 studies were included. The most common phenotype consisted of the combination of optic atrophy (87%) and hearing impairment (94%). Diabetes mellitus was seen in 44% of the patients. Nineteen percent developed cataract. Patients with missense mutations in WFS1 had a lower number of clinical manifestations, less chance of developing diabetes insipidus, but a younger age at onset of hearing impairment compared to patients with nonsense mutations or deletions causing frameshift. There were no studies reporting decreased life expectancy. This review shows that, within the spectrum of WFS1-associated disorders or "wolframinopathies," autosomal dominantly inherited WFLS has a relatively mild phenotype compared to autosomal recessive WS. The clinical manifestations and their age at onset are associated with the specific underlying mutations in the WFS1 gene.


Subject(s)
Hearing Loss , Optic Atrophy , Wolfram Syndrome , Humans , Mutation , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Tungsten , Wolfram Syndrome/diagnosis , Wolfram Syndrome/genetics
10.
HGG Adv ; 4(2): 100181, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36785559

ABSTRACT

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Subject(s)
Retinitis Pigmentosa , Usher Syndromes , Humans , Usher Syndromes/diagnosis , RNA Precursors , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Whole Genome Sequencing , Extracellular Matrix Proteins/genetics
11.
Chronobiol Int ; 39(11): 1533-1538, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36189750

ABSTRACT

Light can restrict the activity of an animal to a diurnal or nocturnal niche by synchronizing its endogenous clock (entrainment) which controls the sleep wake cycle. Light can also directly change an animal's activity level (masking). In mice, high illumination levels decrease activity, i.e. negative masking occurs. To investigate the role of core circadian clock genes Per1 and Per2 in masking, we used a 5-day behavioral masking protocol consisting of 3 h pulses of light given in the night at various illuminances (4-5 lux, 20 lux and 200 lux). Mice lacking the Per1 gene had decreased locomotion in the presence of a light pulse compared to wild-type, Per2 and Per1 Per2 double mutant mice. Per2 single mutant and Per1 Per2 double mutant mice did not show significantly different masking responses compared to wild-type controls. This suggests that Per1 suppresses negative masking responses in mice.


Subject(s)
Circadian Rhythm , Period Circadian Proteins , Mice , Animals , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Circadian Rhythm/genetics , Transcription Factors/genetics , Mutation , Suprachiasmatic Nucleus/metabolism
12.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36243009

ABSTRACT

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Subject(s)
Corneal Dystrophies, Hereditary , Tomography, Optical Coherence , Adult , Animals , Humans , Pedigree , Retina/metabolism , Xenopus laevis/genetics
13.
J Biol Rhythms ; 37(5): 567-574, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35912966

ABSTRACT

Daily biological rhythms are fundamental to retinal physiology and visual function. They are generated by a local circadian clock composed of a network of cell type/layer-specific, coupled oscillators. Animal models of retinal degeneration have been instrumental in characterizing the anatomical organization of the retinal clock. However, it is still unclear, among the multiple cell-types composing the retina, which ones are essential for proper circadian function. In this study, we used a previously well-characterized mouse model for autosomal dominant retinitis pigmentosa to examine the relationship between rod degeneration and the retinal circadian clock. This model carries the P23H mutation in rhodopsin, which induces mild rod degeneration in heterozygous and rapid loss of photoreceptors in homozygous genotypes. By measuring PER2::LUC bioluminescence rhythms, we show that the retinal clock in P23H/+ heterozygous mice displays circadian rhythms with significantly increased robustness and amplitude. By treating retinal explants with L-α aminoadipic acid, we further provide evidence that this enhanced rhythmicity might involve activation of Müller glial cells.


Subject(s)
Circadian Clocks , Retinal Degeneration , Retinitis Pigmentosa , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Mice , Retina/physiology , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Rhodopsin/genetics
14.
Genes (Basel) ; 13(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-35741817

ABSTRACT

Background: Primary open-angle glaucoma (POAG) is the most prevalent glaucoma subtype, but its exact etiology is still unknown. In this study, we aimed to prioritize the most likely 'causal' genes and identify functional characteristics and underlying biological pathways of POAG candidate genes. Methods: We used the results of a large POAG genome-wide association analysis study from GERA and UK Biobank cohorts. First, we performed systematic gene-prioritization analyses based on: (i) nearest genes; (ii) nonsynonymous single-nucleotide polymorphisms; (iii) co-regulation analysis; (iv) transcriptome-wide association studies; and (v) epigenomic data. Next, we performed functional enrichment analyses to find overrepresented functional pathways and tissues. Results: We identified 142 prioritized genes, of which 64 were novel for POAG. BICC1, AFAP1, and ABCA1 were the most highly prioritized genes based on four or more lines of evidence. The most significant pathways were related to extracellular matrix turnover, transforming growth factor-ß, blood vessel development, and retinoic acid receptor signaling. Ocular tissues such as sclera and trabecular meshwork showed enrichment in prioritized gene expression (>1.5 fold). We found pleiotropy of POAG with intraocular pressure and optic-disc parameters, as well as genetic correlation with hypertension and diabetes-related eye disease. Conclusions: Our findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and have prioritized many novel candidate genes for functional follow-up studies.


Subject(s)
Genome-Wide Association Study , Glaucoma, Open-Angle , Computational Biology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/pathology , Humans , Intraocular Pressure , Polymorphism, Single Nucleotide
15.
Prog Retin Eye Res ; 91: 101091, 2022 11.
Article in English | MEDLINE | ID: mdl-35729001

ABSTRACT

Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.


Subject(s)
Albinism , Melanins , Humans , Melanins/genetics , Melanins/metabolism , Mutation , Albinism/genetics , Retina/metabolism , Pigmentation/genetics
16.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328338

ABSTRACT

PURPOSE: The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this study, pigmented rats and mice were systematically injected with various doses of sodium iodate (SI). After injection, the retinal structure and visual function were non-invasively characterized over time to obtain in-depth data on the suitability of these models for studying experimental therapies for retinal degenerative diseases, such as dry AMD. METHODS: SI was injected into the tail vein (i.v.) using a series of doses (0-70 mg/kg) in adolescent C57BL/6J mice and Brown Norway rats. The retinal structure and function were assessed non-invasively at baseline (day 1) and at several time points (1-3, 5, and 10-weeks) post-injection by scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and electroretinography (ERG). RESULTS: After the SI injection, retinal degeneration in mice and rats yielded similar results. The lowest dose (10 mg/kg) resulted in non-detectable structural or functional effects. An injection with 20 mg/kg SI did not result in an evident retinal degeneration as judged from the OCT data. In contrast, the ERG responses were temporarily decreased but returned to baseline within two-weeks. Higher doses (30, 40, 50, and 70 mg/kg) resulted in moderate to severe structural RPE and retinal injury and decreased the ERG amplitudes, indicating visual impairment in both mice and rat strains. CONCLUSIONS: After the SI injections, we observed dose-dependent structural and functional pathological effects on the retinal pigment epithelium (RPE) and retina in the pigmented mouse and rat strains that were used in this study. Similar effects were observed in both species. In particular, a dose of 30 mg/kg seems to be suitable for future studies on developing experimental therapies. These relatively easily induced non-inherited models may serve as useful tools for evaluating novel therapies for RPE-related retinal degenerations, such as AMD.


Subject(s)
Macular Degeneration , Retinal Degeneration , Animals , Disease Models, Animal , Electroretinography , Follow-Up Studies , Iodates , Macular Degeneration/diagnostic imaging , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Mice, Inbred C57BL , Rats , Retina/pathology , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Sodium/pharmacology , Tomography, Optical Coherence
17.
Article in English | MEDLINE | ID: mdl-35332073

ABSTRACT

Rare neurogenetic disorders are collectively common, affecting 3% of the population, and often manifest with complex multiorgan comorbidity. With advances in genetic, -omics, and computational analysis, more children can be diagnosed and at an earlier age. Innovations in translational research facilitate the identification of treatment targets and development of disease-modifying drugs such as gene therapy, nutraceuticals, and drug repurposing. This increasingly allows targeted therapy to prevent the often devastating manifestations of rare neurogenetic disorders. In this perspective, successes in diagnosis, prevention, and treatment are discussed with a focus on inherited disorders of metabolism. Barriers for the identification, development, and implementation of rare disease-specific therapies are discussed. New methodologies, care networks, and collaborative frameworks are proposed to optimize the potential of personalized genomic medicine to decrease morbidity and improve lives of these vulnerable patients.


Subject(s)
Precision Medicine , Rare Diseases , Child , Genomics , Humans , Precision Medicine/methods , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Translational Research, Biomedical
18.
Ophthalmol Retina ; 6(8): 711-722, 2022 08.
Article in English | MEDLINE | ID: mdl-35314386

ABSTRACT

OBJECTIVE: To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene and to identify potential end points and optimal patient selection for future therapeutic trials. DESIGN: International, multicenter, retrospective cohort study. SUBJECTS: Eighty-two patients with GUCY2D-associated LCA or CORD from 54 families. METHODS: Medical records were reviewed for medical history, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain OCT [SD-OCT], fundus autofluorescence). MAIN OUTCOMES MEASURES: Age of onset, evolution of BCVA, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS: Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up times were 5.2 years (interquartile range [IQR] 2.6-8.8 years) for LCA and 7.2 years (IQR 2.2-14.2 years) for CORD. Generally, LCA presented in the first year of life. The BCVA in patients with LCA ranged from no light perception to 1.00 logarithm of the minimum angle of resolution (logMAR) and remained relatively stable during follow-up. Imaging for LCA was limited but showed little to no structural degeneration. In patients with CORD, progressive vision loss started around the second decade of life. The BCVA declined annually by 0.022 logMAR (P < 0.001) with no difference between patients with the c.2513G>A and the c.2512C>T GUCY2D variants (P = 0.798). At the age of 40 years, the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and that of the external limiting membrane (ELM) on SD-OCT correlated significantly with BCVA (Spearman ρ = 0.744, P = 0.001, and ρ = 0.712, P < 0.001, respectively) in those with CORD. CONCLUSIONS: Leber congenital amaurosis associated with GUCY2D caused severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence, with a progressive loss of vision, and culminated in severe visual impairment during mid-to-late adulthood. The integrity of the ELM and EZ may be suitable structural end points for therapeutic studies of GUCY2D-associated CORD.


Subject(s)
Cone-Rod Dystrophies , Leber Congenital Amaurosis , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/genetics , Retrospective Studies , Vision Disorders , Visual Acuity
19.
Dev Biol ; 484: 40-56, 2022 04.
Article in English | MEDLINE | ID: mdl-35123983

ABSTRACT

Circadian clocks are cell-autonomous, molecular pacemakers regulating a wide variety of behavioural and physiological processes in accordance with the 24 â€‹h light/dark cycle. The retina contains a complex network of cell-specific clocks orchestrating many biochemical and cellular parameters to adapt retinal biology and visual function to daily changes in light intensity. The gene regulatory networks controlling proliferation, specification and differentiation of retinal precursors into the diverse retinal cell types are evolutionary conserved among vertebrates. However, how these mechanisms are interconnected with circadian clocks is not well-characterized. Here we explore the existing evidence for the regulation of retinal development by circadian clock-related pathways, throughout vertebrates. We provide evidence for the influence of clock genes, from early to final differentiation steps. In addition, we report that the clock, integrating environmental cues, modulates a number of pathological processes. We highlight its potential role in retinal diseases and its instructive function on eye growth and related disorders.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Retina/metabolism , Vertebrates , Vision, Ocular
20.
Invest Ophthalmol Vis Sci ; 63(1): 19, 2022 01 03.
Article in English | MEDLINE | ID: mdl-35029636

ABSTRACT

Purpose: The purpose of this study was to further expand the mutational spectrum of the Foveal Hypoplasia, Optic Nerve Decussation defect, and Anterior segment abnormalities (FHONDA syndrome), to describe the phenotypic spectrum, and to compare it to albinism. Subjects and Methods: We retrospectively collected molecular, ophthalmic, and electrophysiological data of 28 patients molecularly confirmed with FHONDA from the Netherlands (9), Israel (13), France (2), and the United States of America (4). We compared the data to that of 133 Dutch patients with the 3 most common types of albinism in the Netherlands: oculocutaneous albinism type 1 (49), type 2 (41), and ocular albinism (43). Results: Patients with FHONDA had a total of 15 different mutations in SLC38A8, of which 6 were novel. Excluding missing data, all patients had moderate to severe visual impairment (median visual acuity [VA] = 0.7 logMAR, interquartile range [IQR] = 0.6-0.8), nystagmus (28/28), and grade 4 foveal hypoplasia (17/17). Misrouting was present in all nine tested patients. None of the patients had any signs of hypopigmentation of skin and hair. VA in albinism was better (median = 0.5 logMAR, IQR = 0.3-0.7, P 0.006) and the phenotypes were more variable: 14 of 132 without nystagmus, foveal hypoplasia grades 1 to 4, and misrouting absent in 16 of 74. Conclusions: Compared to albinism, the FHONDA syndrome appears to have a more narrow phenotypic spectrum, consisting of nonprogressive moderately to severely reduced VA, nystagmus, severe foveal hypoplasia, and misrouting. The co-occurrence of nystagmus, foveal hypoplasia, and misrouting in the absence of hypopigmentation implies that these abnormalities are not caused by lack of melanin, which has important implications for understanding the pathogenesis of these features.


Subject(s)
Albinism, Oculocutaneous/genetics , Amino Acid Transport Systems, Neutral/genetics , Anterior Eye Segment/abnormalities , DNA/genetics , Mutation , Visual Acuity , Adolescent , Adult , Aged , Albinism, Oculocutaneous/diagnosis , Albinism, Oculocutaneous/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Child , Child, Preschool , DNA Mutational Analysis , Female , Follow-Up Studies , Fovea Centralis/abnormalities , Humans , Infant , Male , Middle Aged , Phenotype , Retrospective Studies , Syndrome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...