Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909333

ABSTRACT

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms. In patients with a milder adult-onset phenotype sharing a mutation in the canonical donor splice site of intron 7 (c.879+1G>A), both the predicted altered splicing pattern with loss of exon 7 (AireEx7-/-) and normal full-length AIRE mRNA were found, indicating leaky rather than abolished mRNA splicing. Analysis of a corresponding mouse model demonstrated that the AireEx7-/- mutant had dramatically impaired transcriptional capacity of tissue-specific antigens in medullary thymic epithelial cells but still retained some ability to induce gene expression compared with the complete loss-of-function AireC313X-/- mutant. Our data illustrate an association between AIRE activity and the severity of autoimmune disease, with implications for more common autoimmune diseases associated with AIRE variants, such as primary adrenal insufficiency, pernicious anemia, type 1 diabetes, and rheumatoid arthritis.


Subject(s)
Autoimmune Diseases , Polyendocrinopathies, Autoimmune , Adult , Animals , Child, Preschool , Humans , Mice , Mutation , Polyendocrinopathies, Autoimmune/genetics , RNA, Messenger , T-Lymphocytes , AIRE Protein
2.
Front Immunol ; 12: 722860, 2021.
Article in English | MEDLINE | ID: mdl-34526996

ABSTRACT

Autoimmune polyendocrine syndrome type I (APS-1) is a monogenic model disorder of organ-specific autoimmunity caused by mutations in the Autoimmune regulator (AIRE) gene. AIRE facilitates the expression of organ-specific transcripts in the thymus, which is essential for efficient removal of dangerous self-reacting T cells and for inducing regulatory T cells (Tregs). Although reduced numbers and function of Tregs have been reported in APS-I patients, the impact of AIRE deficiency on gene expression in these cells is unknown. Here, we report for the first time on global transcriptional patterns of isolated Tregs from APS-1 patients compared to healthy subjects. Overall, we found few differences between the groups, although deviant expression was observed for the genes TMEM39B, SKIDA1, TLN2, GPR15, FASN, BCAR1, HLA-DQA1, HLA-DQB1, HLA-DRA, GPSM3 and AKR1C3. Of significant interest, the consistent downregulation of GPR15 may indicate failure of Treg gut homing which could be of relevance for the gastrointestinal manifestations commonly seen in APS-1. Upregulated FASN expression in APS-1 Tregs points to increased metabolic activity suggesting a putative link to faulty Treg function. Functional studies are needed to determine the significance of these findings for the immunopathogenesis of APS-1 and for Treg immunobiology in general.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/immunology , Adult , Case-Control Studies , Fatty Acid Synthase, Type I/genetics , Female , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipid Metabolism/immunology , Male , Middle Aged , Polyendocrinopathies, Autoimmune/genetics , T-Lymphocytes, Regulatory/metabolism
3.
Nat Commun ; 12(1): 959, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574239

ABSTRACT

Autoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10-8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7-4.3), P = 9.0 × 10-25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h2).


Subject(s)
Addison Disease/genetics , Genome-Wide Association Study , Basic-Leucine Zipper Transcription Factors/genetics , CTLA-4 Antigen/genetics , Female , Humans , Male , Models, Molecular , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...