Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Genet Couns ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38217320

ABSTRACT

Increased utilization of genomic sequencing in pediatric medicine has increased the detection of variants of uncertain significance (VUS). Periodic VUS reinterpretation can clarify clinical significance and increase diagnostic yield, highlighting the importance of systematic VUS tracking and reinterpretation. There are currently no standardized guidelines or established best practices for VUS management, and our understanding of how genetic counselors (GCs) track and manage VUS results for pediatric patients is limited. In this exploratory study, GCs in pediatric clinics in North America were surveyed about their VUS management practices. A total of 124 responses were included in the analysis. The majority (n = 115, 92.7%) of GCs reported that VUS management workflows were at the discretion of each individual provider in their workplace. Approximately half (n = 65, 52%) kept track of patient VUS results over time, and GCs with lower patient volumes were more likely to do so (p = 0.04). While 95% (n = 114) of GCs had requested VUS reinterpretation at least once, only 5% (n = 6) requested it routinely. Most (n = 80, 86%) GCs notified patients when a VUS was reclassified, although methods of recontact differed when the reclassification was an upgrade versus a downgrade. GCs who asked patients to stay in touch through periodic recontact or follow-up appointments were more likely to request VUS reinterpretation (p = 0.01). The most frequently reported barriers to requesting reinterpretation regularly were patients being lost to follow-up (n = 39, 33.1%), insufficient bandwidth (n = 27, 22.9%), and lack of standardized guidelines (n = 25, 21.2%). GCs had consistent overall practices around VUS management around investigation, disclosure, reinterpretation, and recontact, but specific methods used differed and were at the discretion of each provider. These results showcase the current landscape of VUS management workflows in pediatrics and the challenges associated with adopting more uniform practices. The study findings can help inform future strategies to develop standardized guidelines surrounding VUS management.

2.
medRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260255

ABSTRACT

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

3.
Ann Intern Med ; 176(4): 563-567, 2023 04.
Article in English | MEDLINE | ID: mdl-36972543

ABSTRACT

Interpretation of many genetic test results can change over time as new data accumulate. Hence, physicians who order genetic tests may subsequently receive revised reports with important implications for patients' medical treatment-even for patients who are no longer in their care. Several of the ethical principles underlying medical practice suggest an obligation to reach out to former patients with this information. Discharging that obligation can be accomplished, at a minimum, by attempting to contact the former patient with their last known contact information.


Subject(s)
Physicians , Precision Medicine , Humans
5.
Genet Med ; 24(9): 1878-1887, 2022 09.
Article in English | MEDLINE | ID: mdl-35767006

ABSTRACT

PURPOSE: The knowledge used to classify genetic variants is continually evolving, and the classification can change on the basis of newly available data. Although up-to-date variant classification is essential for clinical management, reproductive planning, and identifying at-risk family members, there is no consistent practice across laboratories or clinicians on how or under what circumstances to perform variant reinterpretation. METHODS: We conducted exploratory focus groups (N = 142) and surveys (N = 1753) with stakeholders involved in the process of variant reinterpretation (laboratory directors, clinical geneticists, genetic counselors, nongenetic providers, and patients/parents) to assess opinions on key issues, including initiation of reinterpretation, variants to report, termination of the responsibility to reinterpret, and concerns about consent, cost, and liability. RESULTS: Stakeholders widely agreed that there should be no fixed termination point to the responsibility to reinterpret a previously reported genetic variant. There were significant concerns about liability and lack of agreement about many logistical aspects of variant reinterpretation. CONCLUSION: Our findings suggest a need to (1) develop consensus and (2) create transparency and awareness about the roles and responsibilities of parties involved in variant reinterpretation. These data provide a foundation for developing guidelines on variant reinterpretation that can aid in the development of a low-cost, scalable, and accessible approach.


Subject(s)
Counselors , Genetic Testing , Focus Groups , Humans , Laboratories , Surveys and Questionnaires
6.
Genet Med ; 24(9): 1941-1951, 2022 09.
Article in English | MEDLINE | ID: mdl-35678782

ABSTRACT

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Subject(s)
Mental Retardation, X-Linked , Protein Serine-Threonine Kinases , Symporters , Brain/abnormalities , Catalytic Domain/genetics , Hemizygote , Humans , Loss of Function Mutation , Male , Maternal Inheritance/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Symporters/metabolism
7.
Ann Intern Med ; 175(7): 994-1000, 2022 07.
Article in English | MEDLINE | ID: mdl-35436152

ABSTRACT

Genomic tests expand diagnostic and screening opportunities but also identify genetic variants of uncertain clinical significance (VUSs). Only a minority of VUSs are likely to prove pathogenic when later reassessed, but resolution of the uncertainty is rarely timely. That uncertainty adds complexity to clinical decision making and can result in harms and costs to patients and the health care system, including the time-consuming analysis required to interpret a VUS and the potential for unnecessary treatment and adverse psychological effects. Current efforts to improve variant interpretation will help reduce the scope of the problem, but the high prevalence of rare and novel variants in the human genome points to VUSs as an ongoing challenge. Additional strategies can help mitigate the potential harms of VUSs, including testing protocols that limit identification or reporting of VUSs, subclassification of VUSs according to the likelihood of pathogenicity, routine family-based evaluation of variants, and enhanced counseling efforts. All involve tradeoffs, and the appropriate balance of measures is likely to vary for different test uses and clinical settings. Cross-specialty deliberation and public input could contribute to systematic and broadly supported policies for managing VUSs.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Humans , Probability , Uncertainty
8.
Hum Mutat ; 43(2): 266-282, 2022 02.
Article in English | MEDLINE | ID: mdl-34859529

ABSTRACT

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity.


Subject(s)
Autism Spectrum Disorder , Dwarfism , Intellectual Disability , Neurodevelopmental Disorders , Scoliosis , Autism Spectrum Disorder/genetics , Humans , Intellectual Disability/genetics , Muscle Hypotonia , Neurodevelopmental Disorders/genetics , Seizures , Weight Gain
9.
Am J Manag Care ; 27(10): e336-e338, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34668674

ABSTRACT

Reaching the goals set by the Health Care Payment and Learning Action Network requires an unyielding and unrelenting focus on encouraging providers to adopt advanced alternative payment models (APMs). Many of these models will continue to be voluntary because they either are in early stages or have not yet proven their effectiveness. The models that have proven their effectiveness should become permanent, comprising the new way that providers are paid in the Medicare program. Either way, getting today's high performers into those programs and keeping them engaged to continue to innovate and set new benchmarks is as important as attracting and improving the performance of poorer performers. That will require a shift in Medicare's policy on pricing and evaluating APMs.


Subject(s)
Medicare , Reimbursement Mechanisms , Aged , Humans , United States
11.
Genet Med ; 23(1): 243, 2021 01.
Article in English | MEDLINE | ID: mdl-32873931

Subject(s)
Morals , Humans
12.
Patient Educ Couns ; 103(1): 127-135, 2020 01.
Article in English | MEDLINE | ID: mdl-31521424

ABSTRACT

OBJECTIVE: Growing use of clinical exome sequencing (CES) has led to an increased burden of genomic education. Self-guided educational tools can minimize the educational burden for genetic counselors (GCs). The effectiveness of these tools must be evaluated. METHODS: Parents of patients offered CES were randomized to watch educational videos before their visit or to receive routine care. Parents and GCs were surveyed about their experiences following the sessions. The responses of the video (n = 102) and no-video (n = 105) groups were compared. RESULTS: GCs reported no significant differences between parents in the video and no-video groups on genetics knowledge or CES knowledge. In contrast, parents' scores on genetics knowledge questions were lower in the video than no-video group (p = 0.007). Most parents reported the videos were informative, and the groups did not differ in satisfaction with GCs or decisions to have CES. CONCLUSION: GCs and parents perceived the videos to be beneficial. However, lower scores on genetics knowledge questions highlight the need for careful development of educational tools. PRACTICE IMPLICATIONS: Educational tools should be developed and assessed for effectiveness with the input of all stakeholders before widespread implementation. Better measures of the effectiveness of these educational tools are needed.


Subject(s)
Counselors , Genetic Counseling , Exome , Humans , Parents , Patient Education as Topic
13.
Genet Med ; 22(3): 633-639, 2020 03.
Article in English | MEDLINE | ID: mdl-31616070

ABSTRACT

The evolving evidence base for the interpretation of variants identified in genetic and genomic testing has presented the genetics community with the challenge of variant reinterpretation. In particular, it is unclear whether an ethical duty of periodic reinterpretation should exist, who should bear that duty, and what its dimensions should be. Based on an analysis of the ethical arguments for and against a duty to reinterpret, we conclude that a duty should be recognized. Most importantly, by virtue of ordering and conducting tests likely to produce data on variants that cannot be definitively interpreted today, the health-care system incurs a duty to reinterpret when more reliable data become available. We identify four elements of the proposed ethical duty: data storage, initiation of reinterpretation, conduct of reinterpretation, and patient recontact, and we identify the parties best situated to implement each component. We also consider the reasonable extent and duration of a duty, and the role of the patient's consent in the process, although we acknowledge that some details regarding procedures and funding still need to be addressed. The likelihood of substantial patient benefit from a systematic approach to reinterpretation suggests the importance for the genetics community to reach consensus on this issue.


Subject(s)
Delivery of Health Care/ethics , Genetic Testing/ethics , Informed Consent/standards , Delivery of Health Care/standards , Genetic Testing/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...