Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 191(9): 533, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375936

ABSTRACT

Long-term increased nutrient influx into normally nutrient-limited peatlands in combination with altered hydrological conditions may threaten a peatland's carbon storage function and affect its greenhouse gas (GHG) budget. However, in situ studies on the effects of long-term altered conditions on peatland functioning and GHG budgets are scarce. We thus quantified GHG fluxes in a peatland exposed to enhanced water level fluctuations and long-term nutrient infiltration in Ontario, Canada, via eddy-covariance and flux chamber measurements. The peatland was a prominent sink of - 680 ± 202 g carbon dioxide (CO2) and a source of 22 ± 8 g methane (CH4) m-2 year-1, resulting in a negative radiative forcing of - 80 g CO2 eq. m-2 y-1. During the growing season CH4 fluxes were constantly high (0.1 g m-2 s-1). Further, on three dates, we measured nitrous oxide (N2O) fluxes and observed a small flux of 2.2 mg m-2 day-1 occurring during the thawing period. Taking the studied ecosystem as a model system for other peatlands exposed to long-term increased nutrient infiltration and enhanced water level fluctuations, our data suggest that such peatlands can maintain their carbon storage function and CO2 sequestration may outweigh emissions of CH4.


Subject(s)
Carbon Sequestration , Environmental Monitoring/methods , Greenhouse Gases/analysis , Methane/analysis , Water Cycle , Carbon Dioxide/analysis , Ecosystem , Nitrous Oxide/analysis , Ontario , Seasons
2.
Sci Total Environ ; 647: 1478-1489, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180353

ABSTRACT

In the future the Sudanian savanna - one of West Africa's high-potential "bread baskets" - will likely face shorter rainy seasons with more extreme rains and droughts. That could have serious impacts on the vegetation and its carbon dioxide (CO2) exchange with potentially increasing CO2 emissions accelerating climate warming. Understanding how the CO2 fluxes in this area respond to environmental variables, in particular rain events, is essential, but available data are scarce. In this study, we monitored net ecosystem exchange (NEE) of CO2, rainfall and other environmental parameters during four years at three savannas. Savannas were characterized by different vegetation due to different land use: i) woody and nearly pristine, ii) mixture of cropland and grassland and iii) intensive grazing. The impact of rain events on CO2 exchange for these contrasting ecosystems were analyzed for single rain events (short-term) and on a yearly time scale (long-term) using three eddy covariance towers. We found that the woody pristine savanna site was a prominent sink of CO2 (-864 to -1299 g CO2 m-2 y-1) while the degraded sites were net CO2 sources (118 to 605 g CO2 m-2 y-1) with a complicated relation with annual rainfall amounts. The NEE responses to single rain events revealed that daytime rain systematically decreased the sink strengths at all sites, which might be associated with decreased light availability. At the degraded sites, additional factors increasing CO2 losses were rain duration and dry spell length. The observed patterns of immediate CO2 flux responses to rainfall at differently used savannas indicate strong internal feedbacks between vegetation and land use changes and raise the question whether the CO2 sink strengths might be overestimated with possible implications for global CO2 budgets. Sustainable adaptation strategies need to be developed for West Africa.

SELECTION OF CITATIONS
SEARCH DETAIL